Skip to main content

Understanding Volleyball Elitserien Sweden: A Comprehensive Guide

Volleyball Elitserien is the premier professional volleyball league in Sweden, showcasing some of the country's top teams and athletes. This league has been a significant part of Swedish sports culture, providing thrilling matches that captivate fans nationwide. With its rich history and competitive nature, the Elitserien not only highlights the skill and dedication of Swedish volleyball players but also serves as a platform for emerging talents to shine on a national stage.

As we approach tomorrow's matches, anticipation builds among fans eager to witness high-stakes games that promise excitement and strategic prowess. Each team brings its unique strengths to the court, making every match unpredictable and thrilling. The upcoming games are not just about winning titles; they are about showcasing resilience, teamwork, and the sheer love for the game.

No volleyball matches found matching your criteria.

The Teams to Watch in Tomorrow’s Matches

Tomorrow’s lineup features some of the most formidable teams in the league. Each team has demonstrated exceptional performance throughout the season, making them strong contenders for victory. Here’s a closer look at what makes these teams stand out:

  • Lindaren Volley: Known for their aggressive playing style and strong defense, Lindaren Volley has consistently been at the top of the league standings.
  • Sandvikens VK: With a balanced mix of experienced players and young talent, Sandvikens VK brings versatility to their gameplay.
  • Karlskrona VBK: Renowned for their strategic plays and cohesive team dynamics, Karlskrona VBK is always a tough opponent.
  • LUGI VBK: This team has shown remarkable improvement this season, with standout performances from their key players.

Betting Predictions: Expert Insights

For those interested in betting on tomorrow’s matches, expert predictions can provide valuable insights into potential outcomes. While betting should always be approached responsibly, understanding trends and team dynamics can enhance your experience.

  • Lindaren Volley vs Sandvikens VK: Experts predict a close match with Lindaren Volley having a slight edge due to their strong defensive strategies.
  • Karlskrona VBK vs LUGI VBK: Karlskrona VBK is favored to win based on their consistent performance throughout the season.

It’s important to consider various factors such as recent form, player injuries, and home-court advantage when making predictions. These elements can significantly influence the outcome of matches.

Tactical Analysis: What to Expect

Each match in Volleyball Elitserien is a showcase of tactical brilliance. Coaches play a crucial role in devising strategies that leverage their team’s strengths while exploiting opponents’ weaknesses.

  • Offensive Strategies: Teams often focus on quick sets and powerful spikes to break through defenses.
  • Defensive Tactics: A robust blocking strategy combined with effective digging techniques can turn the tide in favor of any team.
  • Servings: Precision serves can disrupt opponents’ formations and create scoring opportunities.

Tomorrow’s matches will likely feature innovative tactics as teams adapt to counter each other’s strategies dynamically.

The Role of Fans: Fueling Team Spirit

The energy and support from fans play an integral role in boosting team morale. Whether attending matches live or cheering from afar, fan engagement is crucial for creating an electrifying atmosphere.

  • Fans often wear team colors or merchandise to show solidarity.
  • Social media platforms buzz with discussions and predictions before each game.
  • Cheering sections within stadiums add an extra layer of motivation for players on the court.

A Look at Player Performances

<|repo_name|>JianwenZhou/Graph-based-Neural-Networks<|file_sep|>/README.md # Graph-based Neural Networks This repository contains implementations of different graph neural network architectures. ## Requirements - Python >=3.6 - Pytorch >=1.4 - DGL (Deep Graph Library) >=0.5 ## Models ### GCN (Semi-supervised) - Reference: [Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907) - Code: `models/gcn.py` - Dataset: Cora ### GAT (Semi-supervised) - Reference: [Graph Attention Networks](https://arxiv.org/abs/1710.10903) - Code: `models/gat.py` - Dataset: Cora ### GIN (Semi-supervised) - Reference: [How Powerful are Graph Neural Networks?](https://arxiv.org/abs/1810.00826) - Code: `models/gin.py` - Dataset: Cora ### GraphSAGE (Unsupervised) - Reference: [Inductive Representation Learning on Large Graphs](https://arxiv.org/pdf/1706.02216.pdf) - Code: + Node classification task (`models/graphsage_node_classification.py`) + Link prediction task (`models/graphsage_link_prediction.py`) + Unsupervised node representation learning (`models/graphsage_unsupervised.py`) + Node classification using unsupervised node representations (`models/graphsage_node_classification_with_unsupervised_representations.py`) ## Data Preparation Data preparation code can be found under `data_processing` directory. ### Download Data Download dataset from [Open Graph Benchmark](https://ogb.stanford.edu/docs/home/) by following instructions under [`download_data.sh`](./data_processing/download_data.sh). ### Prepare Data for Semi-supervised Learning Tasks #### Cora Run [`prepare_cora_data_for_semi_supervised_learning_tasks.sh`](./data_processing/prepare_cora_data_for_semi_supervised_learning_tasks.sh) script. #### Pubmed Run [`prepare_pubmed_data_for_semi_supervised_learning_tasks.sh`](./data_processing/prepare_pubmed_data_for_semi_supervised_learning_tasks.sh) script. #### Citeseer Run [`prepare_citeseer_data_for_semi_supervised_learning_tasks.sh`](./data_processing/prepare_citeseer_data_for_semi_supervised_learning_tasks.sh) script. #### Coauthor-CS & Coauthor-Math Run [`prepare_coauthor_cs_and_math_data_for_semi_supervised_learning_tasks.sh`](./data_processing/prepare_coauthor_cs_and_math_data_for_semi_supervised_learning_tasks.sh) script. ### Prepare Data for Unsupervised Learning Tasks #### Amazon-COMPUTER & Amazon-PHONE Run [`prepare_amazon_computer_and_phone_data_for_unsupervised_learning_tasks.sh`](./data_processing/prepare_amazon_computer_and_phone_data_for_unsupervised_learning_tasks.sh) script. #### Amazon-MUSIC & Amazon-ELECTRONICS Run [`prepare_amazon_music_and_electronics_data_for_unsupervised_learning_tasks.sh`](./data_processing/prepare_amazon_music_and_electronics_data_for_unsupervised_learning_tasks.sh) script. ## Usage Instructions To run models using preprocessed data: python3 main.py --model_name MODEL_NAME --dataset DATASET_NAME --run_mode RUN_MODE --num_epochs NUM_EPOCHS Where: * **MODEL_NAME** is one among `gcn`, `gat`, or `gin`. * **DATASET_NAME** depends on which dataset you want your model trained on: + For semi-supervized learning tasks: * Use `cora` if you want your model trained on Cora dataset; * Use `pubmed` if you want your model trained on Pubmed dataset; * Use `citeseer` if you want your model trained on Citeseer dataset; * Use `coauthor_cs` if you want your model trained on Coauthor-CS dataset; * Use `coauthor_math` if you want your model trained on Coauthor-Math dataset; + For unsupervized learning tasks: * Use `amazon_computer` if you want your model trained on Amazon-COMPUTER dataset; * Use `amazon_phone` if you want your model trained on Amazon-PHONE dataset; * Use `amazon_music` if you want your model trained on Amazon-MUSIC dataset; * Use `amazon_electronics` if you want your model trained on Amazon-ELECTRONICS dataset; * **RUN_MODE** depends on whether you wish to train or test your model: + If you wish to train your model then use run mode = `"train"`; + If you wish to test your already-trained model then use run mode = `"test"`; * **NUM_EPOCHS** refers number epochs over which training should take place; it must be an integer between `[1..200]`. For example: To train GAT architecture using preprocessed Cora data over course of five epochs: python3 main.py --model_name gat --dataset cora --run_mode train --num_epochs=5 To test GAT architecture using preprocessed Citeseer data over course of five epochs: python3 main.py --model_name gat --dataset citeseer --run_mode test To train GIN architecture using preprocessed Coauthor-CS data over course of ten epochs: python3 main.py --model_name gin --dataset coauthor_cs --run_mode train --num_epochs=10 ## References [1] Kipf T N , Welling M . Semi-Supervised Classification with Graph Convolutional Networks[C]//Proceedings of the Twenty-Fourth International Conference on Neural Information Processing Systems - Volume 1.NeurIPS'21.November 06–11 2017.San Diego (CA), USA.NeurIPS'21.Proceedings of the Twenty-Fourth International Conference on Neural Information Processing Systems.Vol.1.PMLR,November05–November11,November06–11,November06–11,November06–11,November06–11,November06–11,November06–11,November06–11,November06–11,SanDiego(CA),USA,SanDiego(CA),USANeurIPS'21.ProceedingsoftheTwenty-FourthInternationalConferenceonNeuralInformationProcessingSystems.Vol1.PMLR,pmlr-v97-kipf17b,pmlr-v97-kipf17b,kipf17b,pmlr-v97-kipf17b,timnit,nigel,welling,machinelearningresearchgroup,dartmouthcollege,kaggle,snap,stanforduniversity,snap.stanford.edu,gcn.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.SupplementaryMaterialforthispaperisavailableinhttpstmp.mlr.press8158.
[URL] https://proceedings.neurips.cc/paper_files/paper/2017/hash/c101b1271cfd493e9513db9bf0c7ff65-Abstract.html [2] Veličković P , Cucurull G , Casanova A , et al . Graph Attention Networks[C]//Advances in Neural Information Processing Systems.(NIPS).2017.
[URL] https://papers.nips.cc/paper/6703-graph-attention-networks.pdf [3] Xu K , Zhu J , Zhang J , et al . How Powerful are Graph Neural Networks?[C]//Proceedings of The Thirty Second International Conference On Machine Learning.Cairo,Egypt.June13–18,June13,June14,June15,June16,June17,June18,June19.July20.July21.July22.July23.July24.July25.August01.August02.August03,August04,August05.August06,August07.August08,August09.August10,August11.August12.August13.ML'19.ProceedingsofTheThirtySecondInternationalConferenceOnMachineLearning.Cairo,Egypt.June13-June18June13June14June15June16June17June18June19July20July21July22July23July24July25August01August02August03,August04,August05,August06,August07,August08,August09,August10,August11,August12August13.ML'19.ProceedingsofTheThirtySecondInternationalConferenceOnMachineLearning.Cairo,Egypt.June13-June18.ML'19.ProceedingsofTheThirtySecondInternationalConferenceOnMachineLearning.Cairo,Egypt.June13-June18.ML'19.ProceedingsofTheThirtySecondInternationalConferenceOnMachineLearning.Cairo,Egypt.June13-June18.ML'19.ProceedingsofTheThirtySecondInternationalConferenceOnMachineLearning.Cairo,Egypt.June13-June18.
[URL] https://proceedings.neurips.cc/paper_files/paper/2019/hash/a866d79dfeba37dcab49bbdd71acfa74-Abstract.html [4] Hamilton W L , Ying Z H , Leskovec J . Inductive Representation Learning On Large Graphs[C]//Advances In Neural Information Processing Systems.(NIPS).2017.
[URL] https://papers.nips.cc/paper/6706-inductive-representation-learning-on-large-graphs.pdf <|repo_name|>JianwenZhou/Graph-based-Neural-Networks<|file_sep#!/bin/bash # Download OGB datasets via OGB API. # More details here: # https://ogb.stanford.edu/docs/api/python/ pip install ogb==1.5 python -m ogb.nodeproppred.dataset_dataloader --name ogbn-arxiv --root ./datasets/arxiv/<|repo_name|>JianwenZhou/Graph-based-Neural-Networks<|file_sep shell sh download_cora_dataset_from_OGB_API.sh sh prepare_cora_dataset_for_GCN_GAT_GIN_models_from_OGB_API_downloaded_dataset.sh shell sh download_pubmed_dataset_from_OGB_API.sh sh prepare_pubmed_dataset_for_GCN_GAT_GIN_models_from_OGB_API_downloaded_dataset.sh shell sh download_citeseer_dataset_from_OGB_API_sh sh prepare_citeseer_dataset_for_GCN_GAT_GIN_models_from_OGB_API_downloaded_dataset_sh shell sh download_coauthor_CS_dataset_from_OGB_API_sh sh prepare_coauthor_CS_dataset_for_GCN_GAT_GIN_models_from_OGB_API_downloaded_dataset_sh shell sh download_coauthor_Math_dataset_from_OGB_API_sh sh prepare_coauthor_Math_dataset_for_GCN_GAT_GIN_models_from_OGB_API_downloaded_dataset_sh <|repo_name|>JianwenZhou/Graph-based-Neural-Networks<|file_sep sox audio.wav audio.mp3 -r44100 -c1 -B16 -e signed-int sox audio.mp3 audio.wav -r44100 -c1 -B16 -e signed-int <|repo_name|>JianwenZhou/Speech-to-text-using-RNN-and-CNN<|file_sep Patrick Coady University College Dublin [email protected] Speech-to-text using RNN & CNN (Version v0) This project aims at building speech recognition system which converts spoken language into written text using Recurrent Neural Network(RNN) & Convolutional Neural Network(CNN). Requirements : -> python version : python==3.x.x -> tensorflow version : tensorflow==1.x.x Dataset : The speech commands datasets used here were obtained from Google Speech Commands Dataset available here : https://www.tensorflow.org/datasets/catalog/speech_commands Model Training : Training RNN Model : $ python rnn_model_train_v0_0_0_000001_000001_000001_000001_000001_000001_000001_00001_train_test_split_ratio_audio_duration_training_time_per_epoch_lr_decay_rate_seed_num_examples_to_use_in_training_model_run_id_version_id__version_id_.py Training CNN Model : $ python cnn_model_train_v0_0_0_000001_000001_000001_000001_000001__version_id_.py Model Testing : Testing RNN Model : $ python rnn_model_test_v0_version_id_.py Testing CNN Model : $ python cnn_model_test_v0_version_id_.py Note : Change 'version id' accordinglly. Converting Speech file into text file : Convert Speech file into Text file : $ python convert_speech_file_to_text_file_v0_version_id_.py Sample Output : Model Name : "CNN" Speech File Name : "audio.wav" Text File Name : "audio.txt" Output Text File Content : airplane ship engine street car engine truck engine bus alarm clock siren dog cat knock knock yes no up down left right forward backward stop go zero one two three four five six seven eight nine silence unknown silence silence silence silence silence silence silence silence silence <|repo_name|>JianwenZhou/Speech-to-text-using-RNN-and-CNN<|file_sepstylesheet.css body { background-color:#FFFFFF; color:#333333; font-family:"Arial",sans-serif; margin-left:auto; margin-right:auto; max-width:800px; } header { padding-top:.5em; text-align:center; } footer { font-size:.75em; text-align:center; } nav ul { list-style-type:none; margin-bottom:.5em; text-align:center; } nav li { display:inline-block; margin-left:.25em; margin-right:.25em; } nav li:first-child { margin-left:0px !important; /* Override inline-block */ } nav li:last-child { margin-right:0px !important; /* Override inline-block */ } article section h1, article section h2, article section h3, article section h4, article section h5, article section h6 { border-bottom:solid #666666 thin; color:#666666 !important; /* Override browser default */ padding-bottom:.25em !important; /* Override browser default */ text-transform:none !important; /* Override browser default */ } article section p, article section ul, article section ol { line-height:150%; max-width:600px; /* Allow more than one column */ padding-bottom:.75em; /* Add space between paragraphs/lists */ } /* See http://www.w3schools.com/cssref/pr_dim_max-width.asp */ section article img { border:solid #999999 thin; padding-bottom:.5em; } /* See http://www.w3schools.com/cssref/pr_img_border.asp */ @media screen { body { font-size:x-large } header { font-size:x-large } nav ul { font-size:x-large } footer { font-size:x-large } section article img { max-width:100% } /* See http://www.w3schools.com/cssref/css_pr_max-width.asp */ }JianwenZhou/Speech-to-text-using-RNN-and-CNN<|file_sep/rnn_model_train_v{major version id}_minor version id_{major parameter id}_minor parameter id_{major parameter id}_{minor parameter id}_{major parameter id}_{minor parameter id}_{major parameter id}_{minor parameter id}_{major parameter id}_{minor parameter id}_{training test split ratio}_audio duration_{training time per epoch}_learning rate decay rate_{seed}_num examples used_in training_{model runid}_versionid_.py CNN : cnn_model_train_v{major version id}_minor version id_{batch size}{epochs}{dropout rate}{filter size}{kernel size}{pooling type}{strides}{number filters per layer}__{versionid}.py Version History: Version v0: -> This version implements basic functionality. -> No hyperparameter tuning implemented yet. Version v1: -> Hyperparameter tuning implemented. -> Minor bugs fixed. Version v2: -> Bug fixes. -> Major changes made.<|file_sepadleed@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ git status On branch master No commits yet Untracked files: (use "git add FILENAME" do track) README.md adleed@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ git add README.md adleed@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ git commit -m "Initial commit" [master (root-commit), c5d280d] Initial commit Committer: Adam Lee [email protected] Date:, Sun Jul Day Month Year Hour Min Sec +Timezone Created initial project structure. README.md | Added lines = + ------------------------------------------------------------------------ Total | Added lines = + Changes not staged for commit: (use "git add FILENAME" do include in commit) Directory already exists. adleed@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ git remote add origin https://github.com/JianwenZhou/GNTD.git adleed@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ git push origin master Enumerating objects: error: adeled@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ ls main.ipynb models notebooks requirements.txt utils README.md models notebooks results requirements.txt utils reports models notebooks results scripts utils results scripts notebooks results scripts utils reports scripts notebooks scripts setup.cfg utils reports setup.cfg notebooks scripts setup.cfg utils reports setup.cfg notebooks tests setup.cfg utils reports adeled@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ ls main.ipynb models notebooks requirements.txt utils README.md models notebooks results requirements.txt utils utils scripts notebooks results scripts utils reports scripts notebooks results setup.cfg utils reports adeled@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ ls main.ipynb models notebooks requirements.txt utils scripts notebooks results setup.cfg utils setup.cfg notebooks scripts setup.cfg utils tests notesbooks scripts setup.cfg tests tests notesbooks tests tests notesbooks adeled@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ ls main.ipynb models notebooksscripts requirements.txt utilsests notebooksscripts notebooksscripts resultsscripts setup.cfg utilsests setup.cfg notebooksscripts resultsscripts utilsests utilsests tests notebooksscripts resultsscripts adeled@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ ls main.ipynb models requirements.txt utilsests notebooksscripts resultsscripts utilsests resultsscripts utilsests utilsests adeled@DESKTOP-VSDP9VH MINGW64 ~/Desktop/Coursework/Spring2021/GNTD (master) $ cd .. adedleed@USERPC ~ $ cd Desktop/ adedleed@USERPC Desktop $ cd Coursework/ adedleed@USERPC Coursework $ cd Spring202/ adedleed@USERPC Spring202 $ cd /GNTD/ adedleed@USERPC GNTD $ ls main.ipynb models requirements.txt utilsests notebooksscripts resultsscript utilsests resultscript utilset utilset adedleed@USERPC GNTD $ ls main.ipynb modles requiremntstxt utileset adedleed@USERPC GNTD $ ls main.ipynb requirments.txt utilesets adedleed@USERPC GNTD $ ls main.ipynbs requirmenttsxt utileset adedleed@USERPC GNTD $ git status On branch master No commits yet Untracked files: (use "git add FILENAME" do track) README.md addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/Coursework/Sprnng20201/GNTH/ $ addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/Cousewrok(Spring)/GNTH/ $ addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GNTH/ $ addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GHNt/ $ addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GHNt $ ll total drwxrw-r-- root/root SystmeUserGroup block device directory drwxrw-r-- root/root SystmeUserGroup block device directory . drwxrw-r-- root/root SystmeUserGroup block device directory .. drwxrw-r-- root/root SystmeUserGroup block device directory data drwxrw-r-- root/root SystmeUserGroup block device directory docs drwxrw-r-- root/root SystmeUserGroup block device directory lib drwxrw-r-- root/root SystmeUserGroup block device directory main drwxrw-r-- root/root SystmeUserGroup block device directory modles drwxrw-r-- root/root SystmeUserGroup block device directory notesbooks drwxrw-r-- root/root SystmeUserGroup block device directory resutls drwxrw-r-- root/root SystmeUserGroup block device directory reqirements_txt drwxrw-r-- root/root SystmeUserGroup block device directory setups_cfg drwxrw-r-- root/root SystmeUserGroup block device directory stes drwxrw-r-- root/root SystmeUserGroup block device directory utilesets addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GHNt $ addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GHNt $ ll total dr-xr-x--- USERGROUP System User Group Block Device Directory dr-xr-x--- USERGROUP System User Group Block Device Directory . dr-xr-x--- USERGROUP System User Group Block Device Directory .. dr-xr-x--- USERGROUP System User Group Block Device Directory data dr-xr-x--- USERGROUP System User Group Block Device Directory docs dr-xr-x--- USERGROUP System User Group Block Device Directory lib dr-xr-x--- USERGROUP System User Group Block Device Directory main dr-xr-x--- USERGROUP System User Group Block Device Directory modles dr-xr-x--- USERGROUP System User Group Block Device Directory notesbooks -drw------- user user Regular File regular file drw------- user user Regular File regular file drw------- user user Regular File regular file drw------- user user Regular File regular file drw------- user user Regular File regular file drw------- user user Regular File regular file drw------- user user Regular File regular file drw------- user user Regular File regular file drw------- user user Regular File readme.rtf -d---------xroot ROOT Special File special file -d---------xroot ROOT Special File special file -d---------xroot ROOT Special File special file -d---------xroot ROOT Special Fie special fiele -d---------xroot ROOT Special Fie special fiele -d---------xroot ROOT Special Fie special fiele -d---------xroot ROOT Special Fie special fie -drw-------oUSERGROUP SYSTEM_USER_GROUP Regular Fiel reguler fiel drw-------oUSERGROUP SYSTEM_USER_GROUP Reguler Fiela reguler fiela drw------xoOWNERGROUP SYSTEM_USER_GROUP Reguler Fiela reguler fiela drw------xoOWNERGROUP SYSTEM_USER_GROUP Reguler Fiela reguler fiela -dr-----xr-oOWNER OWNER Reguler Fiela reguler fiela lr--------oOWNER OWNER Reguler Fiela regler fiela lr--------oOWNER OWNER Reguler Fiela regler fiela lr--------oOWNER OWNER Reguler Fiela regler fiela lr--------oOWNER OWNER Regurer Fil regler fil lr--------oOWNER OWNER Regurer Fil regler fil -l----------owner owner Link link llllllllllllll -l----------owner owner Link link llllllllllll -l----------owner owner Link link llllllrrrrrrrrrrrrrrrrrrrrrrrrrrrr -l----------owner owner Link link llllllfffffffffffffffttttttttttttttttttfffffffffffffffffffffffffffttttttfffffffffffffffffffffffffffttttttfffffffffffffffffffttttttffffffffffffffffffftttttyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyttyyyyyyyytyyyyyyyytyyyyyyyytyyyyyyyytzzzzzzzzzzzzzzzzzzyyyyyyyzyxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxyyuuuuuuuuuuuuuuuuyyvvvvvvvvvvvvvvvvyuwwwwwwwwwwwwwwwwwwwqqqqqqqqqqqqqqqqqrvvwwwvvvwwwvvvwwwvvvwwwvvvwwwvvvwwwvvvwwwjjjjjjjjjjjjjjjjujiiiiiiiiiiiiiiiijiiiiiiiiiiiiiijjiiddddddddddddddddcccccdddddcccccceeeeeeeeeeeeeeeecccccccccccccccccggggggggggggggggeeeeeeeeeeeeeeeeggggggggggfgfgfgfgfgfgfggfhhhhhhhhhhhhhhhghhhhhhhhghhhhhhghhhhhhghhhhhhghhhhhhghhhhhhghhiikkkkkkkkkkkkkkkikkikikikikikikikkikikikikkikkikkikkilmmmmmmmmmmmmmmmmlmnmnmnmnmnmnmnlmnlnlnlnlnlnlnlmnlnlnlnlnlnlmnloooooooopppppoooooooooooooooopppppppppppppppooppooooooooooooooopqqrqqrqqrqqrqqrqqqrqqrqqrqqrqqrqsqtqttqttqttqttqttqttqttqttqttquuvuvuvuvuvuvuvwvwvwvwvwvwvwvwvwvwvwvwvxxyzzyzyzyzyzyzzyzzyzzyzzyzzyzzaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbccccccccccccccccccccddddddddddddddddddeeeeeeeefffffffffefgfhfhfhfhfhfhfhfhfiigihigihigihigihigihijjklmnopqrstuvwxyz01234567890123456789012345678901234567890123456789012345678901234567890 addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GHNt $ addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GHNt $ addedeldepcuserpc:/mnt/c/Users/adlee/Desktop/coursewk(Spring)/GHNt $ addedeldepsysadm @ DESKTOP-DVRUUNO ~ /var/log/apache-tomcat/webapps /spring-mvc-jsp-webapp/target/tomcat/webapps /spring-mvc-jsp-webapp/target/tomcat/webapps/bin /spring-mvc-jsp-webapp/target/tomcat/webapps/bin/setclasspath.bat /spring-mvc-jsp-webapp/target/tomcat/webapps/bin/setclasspath.bat /spring-mvc-jsp-webapp/target/tomcat/webapps/bin/setclasspath.bat /spring-mvc-jsp-webapp/target/tomcat/webapps/bin/setclasspath.bat /spring-mvc-jsp-webapp/target/tomcat/webapps/bin/setclasspath.bat setclasspath.bat $ setclasspath.bat @ DESKTOP-DVRUUNO ~ /var/log/apache-tomcat/webapps/springmvcjspwebapptargettomcatwebapptargettomcatwebapptargettomcatwebapptargettomcatwebapptargettomcatwebappsbin/springmvcjspwebapptargettomcatwebapptargettomcatwebapptargettomcatwebapptargettomcatwebapptargettomcatwebappsbin/setclasspath.bat springmvcjspwebapptargettomca web apps bin set classpath bat springmvcjsp web app target tom cat web apps bin set class path bat springmvc jsp web app target tom cat web apps bin set class path bat spring mvc jsp web app target tom cat web apps bin set class path bat spring mvc jsp web app target tom cat web apps bin set class path bat spring mvc jsp web app target tom cat web apps bin set class path bat $ cd desktopcoursewkSpringGHT/ cd desktopcoursewkSpringGHT/ addedelpsysadm @ DESKTOP-DVRUUNO ~ /var/log/apache-tomca t/apache-tomca t/apache-t omca t/apache-t omca t/apache-t omca t/apache-t omca t/apache-t omca t/apache-t oms/var/log/apachetomca apache-tomcats/var/log/apachetomcats/var/log/apachetomcats/var/log/apachetommcs/var/log/apachetommcs/var/log/apachetommcs/var/log/apachetommcs/var/logsapache logsapache logsapache logsapache logsslsslsslsslsslssl ssl ssl ssl ssl ssl ssl ssl sslogslogslogslogsdocker docker docker docker dockerdocker dockerdocker dockerdocker dockerdockerdocker/docker/docker/docker/docker/docker/docker/docker/dockerdockerdockerdockerdockerdocker docker docker docker docker docker docker docker/dockerdockerdockerdockerdocker docker docker docker/docker/docker/docker/docke r/docke r/docke r/docke r/docke r/docke r/docke r/docke rdocker/hub/linuxamd64/layers/shell/git/git/git/git/git/git/git/hub/linuxamd64/layers/shell/gi thub/linuxamd64/layers/shell/git/hub/linuxamd64/layers/shell/gi th