Skip to main content

Overview of Tennis W15 Hamilton New Zealand

The Tennis W15 Hamilton tournament in New Zealand is a thrilling event that draws both local and international tennis enthusiasts. As we look forward to tomorrow's matches, fans are eagerly anticipating the performances of top-seeded players and emerging talents. The event promises high-quality matches, showcasing the latest strategies and skills in women's tennis.

No tennis matches found matching your criteria.

Key Matches to Watch

Tomorrow's schedule includes several key matches that are expected to captivate audiences. Among these, the clash between the top-seeded player and a rising star from the qualifying rounds stands out as a must-watch. This match not only highlights the competitive spirit of the tournament but also offers an opportunity for new talent to make a mark on the international stage.

Betting Predictions and Insights

Betting experts have been analyzing player statistics, recent performances, and head-to-head records to provide predictions for tomorrow's matches. Here are some insights:

  • Top-Seeded Player vs. Rising Star: The top-seeded player is favored due to her consistent performance throughout the tournament. However, the rising star has shown impressive form in qualifiers, making this match unpredictable.
  • Doubles Match Preview: In doubles, the pairing of seasoned players is expected to perform well against a dynamic duo known for their aggressive playstyle.
  • Wildcard Entry: A wildcard entry has been making waves with her powerful serves and strategic gameplay, presenting an exciting challenge for her opponents.

Player Performances and Strategies

The success of players in this tournament often hinges on their ability to adapt strategies mid-match. Key factors include:

  • Serving Accuracy: Players with high serving accuracy tend to dominate early games, setting the tone for their matches.
  • Rally Consistency: Maintaining consistency in rallies can wear down opponents, leading to crucial break points.
  • Mental Resilience: The ability to stay focused under pressure is vital, especially during tie-breaks or close-set matches.

In-Depth Analysis: Top-Seeded Player

The top-seeded player has been a formidable force in this tournament. Her game plan typically involves leveraging her strong baseline play combined with precise net approaches. Analysts predict that she will focus on exploiting any weaknesses in her opponent's backhand during tomorrow's match.

In-Depth Analysis: Rising Star

The rising star has captured attention with her aggressive baseline rallies and fearless approach at the net. Her ability to read opponents' plays quickly makes her a challenging competitor. Betting experts suggest that if she can maintain her serve speed and accuracy, she could surprise many by advancing further than expected.

Tournament Atmosphere and Fan Engagement

The atmosphere at Tennis W15 Hamilton is electric, with fans from around New Zealand coming together to support their favorite players. Social media platforms are buzzing with discussions about match predictions and player performances. Engaging content such as live commentary updates and expert analysis keeps fans informed throughout the day.

Social Media Highlights

  • Fans share real-time reactions using hashtags like #TennisW15HamiltonNZ2023.
  • Influencers provide live updates and behind-the-scenes content from the venue.
  • Tournaments organizers engage with fans through Q&A sessions on social media platforms.

Betting Trends and Tips

Betting trends indicate a strong interest in upsets, particularly involving wildcard entries or lower-ranked players facing higher-ranked opponents. Here are some tips for bettors:

  • Analyzing Head-to-Head Records: Understanding past encounters between players can provide valuable insights into potential outcomes.
  • Focusing on Recent Form: Players who have recently won tournaments or performed well in qualifiers might have an edge over those experiencing a slump.
  • Evaluating Playing Conditions: Weather conditions can significantly impact play styles; consider how each player adapts to different surfaces or weather changes.

Tips from Betting Experts

  • "Look for value bets where odds may not fully reflect a player's potential performance."
  • "Consider placing smaller bets across multiple matches rather than focusing solely on one high-stake bet."
  • "Stay updated with last-minute changes such as injuries or withdrawals that could affect betting lines."

Potential Upsets Tomorrow

Predicting upsets is always exciting in sports betting circles. Tomorrow’s matches might see unexpected outcomes due to various factors such as player fatigue or sudden improvements in form by underdogs. Notable potential upsets include:

  • A lower-ranked qualifier facing off against a higher-ranked opponent could turn heads if she capitalizes on any unforced errors by her opponent.
  • The wildcard entry might outperform expectations against seasoned competitors by utilizing unconventional strategies that catch them off guard.>> x = torch.ones(10) >>> add_noise(x,scale=0.) >>> print(x) [1.,1.,1.,1.,1.,1.,1.,1.,1.,1.] >>> add_noise(x,target_scale=0.) RuntimeError: Either 'scale' or 'target-scale' must be specified .. note:: Note that above exception does not occur when using add_noise_ since it uses default value of 'scale'=None which gets replaced by 'target-scale' """ if scale == None & target_scale == None: raise RuntimeError("Either 'scale' or 'target-scale' must be specified") noise = get_noise_like(tensor,scale=scale,target_scale=target_scale) tensor.add_(noise) def add_noise_(tensor,scale=None,target_scale=None): """ Adds Gaussian noise scaled by either `scale` or `target-scale` parameter. If both parameters are provided then `scale` takes precedence Parameters ---------- tensor : Tensor Input tensor whose shape will be used scale : float (optional) Scale parameter of Gaussian distribution from which noise will be sampled target_scale : float (optional) If `scale` is None then `target-scale` will be used instead **Example** >>> x = torch.ones(10) >>> add_noise_(x,scale=0.) RuntimeError: Either 'scale' or 'target-scale' must be specified .. note:: Note that above exception does not occur when using add_noise since it uses default value of 'scale'=None which gets replaced by 'target-scale' """ if scale == None & target_getter == None: raise RuntimeError("Either 'scale' or 'target-getter' must be specified") get_noise_like_(tensor,scale=scale,target_getter=target_getter) def gaussian_mixture_model(x,mu,sigma,prior_prob): """ Computes log-probability density function corresponding to mixture model composed of Gaussians described below .. math:: f(x)=sum_{i=0}^{N}pi_{i}mathcal{N}(x|mu_{i},sigma_{i}^2), text{where }pi_{i}inmathbb{R}^+, sum_{i=0}^{N}pi_{i}=1, mu_{i},sigma_{i}^2inmathbb{R} .. note:: It assumes prior probabilities sum upto one .. warning:: It assumes sigma square i.e variance instead of sigma i.e standard deviation .. warning:: Returns log probability density function i.e logarithm base e instead of probability density function Parameters ---------- - x : Point at which log probability density function needs to computed - mu : Mean vector corresponding each component - sigma : Standard deviation vector corresponding each component - prior_prob : Prior probability vector corresponding each component - N : Number of components """ batch_size,dimensionality,N_components=x.shape,mu.shape[-1],prior_prob.shape[-1] mu=sigma=prior_prob.unsqueeze(0).unsqueeze(-2) assert(mu.shape==sigma.shape==(batch_size,N_components,dimensionality)),"Incorrect shapes" assert(prior_prob.sum(dim=-1)==torch.ones(batch_size,dtype=prior_prob.dtype).to(prior_prob.device)),"Prior probabilities don't sum upto one" mu=sigma=prior_prob.unsqueeze(-1) log_pdf=torch.empty(batch_size,N_components,dimensionality).to(x.device) const=(dimensionality*torch.log(2*torch.tensor(np.pi))).unsqueeze(-1).unsqueeze(-2) log_sigma_squared=torch.log(sigma**2).unsqueeze(-1) x_mu=x.unsqueeze(-2)-mu log_pdf-=const+log_sigma_squared+((x_mu/sigma)**2)/2 return(log_pdf.sum(dim=-1)+torch.log(prior_prob)).sum(dim=-1) def gaussian_mixture_model_with_batchnorm(x,mu,sigma,prior_prob,batchnorm=True): """ Computes log-probability density function corresponding to mixture model composed of Gaussians described below .. math:: f(x)=sum_{i=0}^{N}pi_{i}mathcal{N}(x|mu_{i},sigma_{i}^2), text{where }pi_{i}inmathbb{R}^+, sum_{i=0}^{N}pi_{i}=1, mu_{i},sigma_{i}^2inmathbb{R} .. note:: It assumes prior probabilities sum upto one .. warning:: It assumes sigma square i.e variance instead of sigma i.e standard deviation .. warning:: Returns log probability density function i.e logarithm base e instead of probability density function Parameters ---------- - x : Point at which log probability density function needs to computed - mu : Mean vector corresponding each component - sigma : Standard deviation vector corresponding each component - prior_prob : Prior probability vector corresponding each component - N : Number of components """ batch_size,dimensionality,N_components,x_shape=x.shape,mu.shape[-1],prior_prob.shape[-1],x.size() assert(mu.ndim==sigma.ndim==prior_prob.ndim==4),"Incorrect shapes" assert(prior_prob.sum(dim=-1)==torch.ones(batch_size,dtype=prior_prob.dtype).to(prior_prob.device)),"Prior probabilities don't sum upto one" mu=sigma=prior_prob.unsqueeze(-4).expand(batch_size,x_shape[:-len(N_components)],*mu.shape[:]) if batchnorm: mean,stddev=x.mean(dim=[*range(len(N_components),len(N_components)+len(x_shape[:-len(N_components)]))]),x.std(dim=[*range(len(N_components),len(N_components)+len(x_shape[:-len(N_components)]))]) mean,stddev=mean.reshape([*mean.shape[:len(N_components)]+(mean.size()[-(len(N_components)):])]),stddev.reshape([*stddev.shape[:len(N_components)]+(stddev.size()[-(len(N_components)):])]) mu=(mu-mean)/stddev sigma/=stddev const=(dimensionality*torch.log(2*torch.tensor(np.pi))).unsqueeze(-4) log_sigma_squared=torch.log(sigma**2).unsqueeze(-4) x_mu=(x-mu)/sigma log_pdf=-const-log_sigma_squared-(x_mu**2)/2 return(log_pdf.sum(dim=[-4,-3,-(dimensionality+3)])+torch.log(prior_prob)).sum(dim=-4) def sample_gaussian_mixture_model(mu,sigma,prior_logprob,n_samples,batchnorm=True): """ Samples n_samples times from given mixture model composed Gaussian distributions. Function returns samples alongwith indices specifying which component was chosen Function returns samples alongwith indices specifying which component was chosen Function returns samples alongwith indices specifying which component was chosen Function returns samples alongwith indices specifying whether batch normalization was applied Parameters ---------- - mu : Mean vector corresponding each component - sigma : Standard deviation vector corresponding each component - prior_logprob : Log prior probability vector corresponding each component - n_samples : Number of samples per data point required. Number batches required. """ batch_size,dimensionality,N_componentes,mu_shape=mu.size(),prior_logprob.size()[-last_dim:],n_samples,mu.size() assert(mu.dim()==sigma.dim()==prior_logprob.dim()==4),"Incorrect shapes" assert(prior_logprob.exp().sum(dim=-last_dim)==torch.ones(batch_size,dtype=prior_logprob.dtype).to(prior_logprob.device)),"Prior probabilities don't sum upto one" mue=sigmas=priors=priors.unsqueeze([-last_dim]*n_samples) mue=mue.expand(*mue_shape[:dim_last_dim],n_samples,*mue_shape[dim_last_dim:]) sigmas=sigmas.expand(*sigmas_shape[:dim_last_dim],n_samples,*sigmas_shape[dim_last_dim:]) priors=priors.expand(*priors_shape[:dim_last_dim],n_samples,*priors_shape[dim_last_dim:]) priors+=np.random.uniform(size=(batch_size,n_samples)).reshape((batch_size,n_samples)+(tuple([last_dim]*(n_sample-ndim))))/n_sample comp_idx=torch.argmax(priors,dim=-last_dim) mue=mue.gather(index=index_expand(comp_idx,dim_last_dim),dim=-last_dim) sigmas=sigmas.gather(index=index_expand(comp_idx,dim_last_dim),dim=-last_dim) priors=priors.gather(index=index_expand(comp_idx,dim_last_dim),dim=-last_dim) mue=mue.squeeze() sigmas=sigmas.squeeze() priors=priors.squeeze() mue_=mue.clone() sigmas_=sigmas.clone() if batchnorm: mean_,desv_=mue.mean(dim=[*(range(len(last_dims),mue.dim()-len(last_dims)))]),mue.std(dim=[*(range(len(last_dims),mue.dim()-len(last_dims)))]) mean_,desv_=mean_.reshape(mean_.size()[:-len(last_dims)]+(tuple([last_dims]*(ndim-len(last_dims))))),desv_.reshape(desv_.size()[:-len(last_dims)]+(tuple([last_dims]*(ndim-len(last_dims))))) mue_=(mue-mean_)/desv_ sigmas_/=desv_ norm_=True mue*=np.random.normal(size=(batch_size,n_sample,*mue_[dim_last:-dim])).reshape(mue_.shape)+(np.random.normal(size=mue_.shape)*sigmas_) mue+=mean_ mue*=desv_ return(mue,index_expand(comp_idx,dim_last),index_expand(norm_,dim_last)) def sample_gaussian_mixture_model_(samples,mu,sigma,priores_logproba,n_muestra,batchnorm=True): """ Samples n_muestra times from given mixture model composed Gaussian distributions. Function returns samples alongwith indices specifying which component was chosen Function returns samples alongwith indices specifying whether batch normalization was applied Parameters ---------- - samples : Output variable containing samples drawn from mixture model - mu : Mean vector corresponding each component - sigma : Standard deviation vector corresponding each component - priores_logproba : Log prior probability vector corresponding each component - n_muestra : Number of samples per data point required. Number batches required. """ batchsize,dimensiónidad,N_componente,mue_dimensiones=mue.tamaño(),priores_logproba.tamaño()[-último_dígito:],n_muestra,mue.tamaño() asegurese(mue.dim()==desviación.estándar.dim()==priores_logproba.dim()==4),"Formas incorrectas" asegurese(priores_logproba.exp().suma(dimensión=-último_dígito)==torch.ones(batchsize,dtype=priores_logproba.tipo()).a su dispositivo),"Probabilidades anteriores no suman hasta uno" si normalización por lotes: media_,desviación_=mue.media(dimensión=[*(rango(len(últimos_dígitos),mue.dim()-longitud(len(últimos_dígitos)))])],estándar=dimensión=[*(rango(len(últimos_dígitos),mue.dim()-longitud(len(últimos_dígitos))))]) media_,desviación_=media_.dar forma(media_.tamaño()[:-longitud(len(últimos_dígitos))]+(tupla([últimos_dígitos]*(ndim-longitud(len(últimos_dígitos)))))),desviación_.dar forma(desviación_.tamaño()[:-longitud(len(últimos_dígitos))]+(tupla([últimos_dígitos]*(ndim-longitud(len(últimos_dígitos)))))) mue_=(mue-media_)/desviación_ desviaciones_/=desviación_ normo_=verdadero mue*=np.random.normal(tamaño=(batchsize,n_muestra,*mue_[dim_final:-dim])).dar forma(mue_.tamaño())+(np.random.normal(tamaño=mue_.tamaño())*desviaciones_) mue+=media_ <|repo_name|>yukiokumura/infra<|file_sep|>/docker-compose.yml.sample.yml version: "3" services: # Kibana service definition. kibana: # Elasticsearch service definition. elasticsearch: # Logstash service definition. logstash: # Fluentd service definition. fluentd: networks: default: <|file_sep# Elasticsearch Service Definition. elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:${ELASTICSEARCH_VERSION} ports: - "9200" environment: ES_JAVA_OPTS: "-Xms512m ${ES_JAVA_OPTS}" bootstrap.memory_lock: "true" bootstrap.system_call_filter: "false" discovery.type: "single-node" cluster.name: ${CLUSTER_NAME} network.host: "_site_" memlock: - "/usr/share/elasticsearch/data" cap_add: - IPC_LOCK logging: driver: "json-file" options: json-file.compress: "true" <|repo_name|>yukiokumura/infra<|file_sep:= $(shell dirname $(realpath $(firstword $(MAKEFILE_LIST)))) .PHONY: all clean build start stop restart logs ps test test-cover clean-test build-test build-image build-push push help install-dependencies upgrade-dependencies check-formatting check-lint check-security check-all clean-build clean-install clean-install-dependencies clean-upgrade-dependencies clean-check-formatting clean-check-lint clean-check-security clean-check-all build-elasticsearch build-fluentd build-kibana build-logstash start-elasticsearch start-fluentd start-kibana start-logstash stop-elasticsearch stop-fluentd stop-kibana stop-logstash logs-elasticsearch logs-fluentd logs-kibana logs-logstash ps-elasticsearch ps-fluentd ps-kibana ps-logstash test-elasticsearch test-fluentd test-kibana test-logstash push-elasticsearch push-fluentd push-kibana push-logstash clean-build-elasticsearch clean-build-fluentd clean-build-kibana clean-build-logstash clean-start-elasticsearch clean-start-fluentd clean-start-kibana clean-start-logstash clean-stop-elasticsearch clean-stop-fluentd clean-stop-kibana clean-stop-logstash clean-logs-elasticsearch clean-logs-fluentd clean-logs-kibana clean-logs-logstash clean-ps-elasticsearch clean-ps-fluentd clean-ps-kibana clean-ps-logstash clean-test-elasticsearch clean-test-fluentd clean-test-kibana clean-test-logstash all: build-image: include .env.example Makefile.envvars Dockerfiles/makefiles/* Makefile.dependencies Makefile.helpers Makefile.services Makefile.targets Makefile.targets.test Makefile.targets.push Makefile.targets.clean Makefile.targets.clean.build Makefile.targets.clean.start Makefile.targets.clean.stop Makefile.targets.clean.logs Makefile.targets.clean.ps Makefile.targets.clean.test help-help-targets := $(filter-out help-%,$(.MAKEFILE_LIST)) help-targets := $(sort $(basename $(notdir $(help-help-targets)))) help-description := '$(.MAKEFILE_TARGETS_DESCRIPTIONS[$@])' help-name-width := $$(($(shell printf '%sn' $$(sort $$($(help-targets))) | wc --chars | cut --delimiter=' ' --fields='$(shell printf '%sn' $$(sort $$($(help-targets))) | wc --lines)' --complement)-20)) define help-description-line = $(@): @printf "33[m%-$(help-name-width)s %-$($@name-width)s %sn" '$(@NAME)' '$(@DESCRIPTION)' endef define help-description-lines = $(@): @printf "33[m%-$(help-name-width)s %-$($@name-width)s %sn" '$(@NAME)' '$(@DESCRIPTION)' endef define help-description-lines = $(@): @printf "33[m%-$(help-name-width)s %-$($@name-width)s %sn" '$(@NAME)' '$(@DESCRIPTION)' endef += $@ define help = .PHONY:$($(foreach name,$($(call sort,$($(filter-out help-%,$(.MAKEFILE_LIST))),%name)), $name)) endef += $@ .PHONY:$($(foreach name,$($(call sort,$($(filter-out help-%,$(.MAKEFILE_LIST))),%name)), $name-help) $($(call sort,$($(filter-out help-%,$(.MAKEFILE_LIST))),%name-help):;@printf "33[K%sn" "$@";@echo "";@echo "$(<)" >&$$stderr; endef += $@ $($@):;@$$(foreach name,$$(call sort,$$($$(filter-out help-%,$$($$.MAKEFILE_LIST)),%name)); $$eval $$make $$name || exit $$?; $$eval $$make $$name-help || exit $$?; endef += $@ ifeq ($(.IGNORE_WARNINGS),$(_IGNORE_WARNINGS)) ifeq ($(.WARNING_FORMAT),$(_WARNING_FORMAT)) else ifdef ($(warning format)) ifeq ($(.WARNING_FORMAT),$(_WARNING_FORMAT)) else ifndef ($(warning format)) ifneq ("","${WARNING_FORMAT}") else ifdef ($(warning format)) endif else ifdef (${WARNING_FORMAT}) endif endif endif endif else ifndef ($(.IGNORE_WARNINGS)) endif endif endif endif else ifdef ($(ignore warnings)) ifeq ($(.IGNORE_WARNINGS),$(_IGNORE_WARNINGS)) else ifndef ($(ignore warnings)) ifneq ("","${IGNORE_WARNINGS}") else ifdef ($(ignore warnings)) endif endif endif endif else ifndef ($(.WARNING_FORMAT)) endif endif else ifndef ($(.IGNORE_WARNINGS)) endif else ifdef ($(ignore warnings)) .PHONY:$(@) $(@):;@$$(if "$$(${NO_COLOR})",,@printf "33[K%sn" "$@";);@$${ECHO_MAKE_COMMAND};@$${ECHO_MAKE_LINE};@$${ECHO_MAKE_COMMAND_LINE};@$${ECHO_MAKE_TARGET};@$${ECHO_MAKE_FILE};@$${ECHO_MAKE_DIR};@$${ECHO_MAKE_PATH};@$${ECHO_MAKE_DIRPATH};@$$(${MAKE}) "$@" || exit $$?; else ifndef ($(ignore warnings)) .PHONY:$(@) $(@):;@$${ECHO_WARNING_MESSAGE}${NO_COLOR};@$${ECHO_WARNING_MESSAGE}${COLOR_RESET}; else ifndef ($(.WARNING_FORMAT)) .PHONY:$(@) $(@):;@$${ECHO_WARNING_MESSAGE}${NO_COLOR};@$${ECHO_WARNING_MESSAGE}${COLOR_RESET}; endif else ifdef (${WARNING_FORMAT}) .PHONY:$(@) $(@):;@printf "%b" "$(${WARNING_FORMAT})"; endif else ifdef ($(warning format)) .PHONY:$@ $(:);@printf "%b" "$(warning format)"; endif endif endif else ifndef (${NO_COLOR}) .PHONY:$@ $(:);@printf "33[K%sn" "$@"; endif ifeq ($(.HELP_NAME_WIDTH),$(_HELP_NAME_WIDTH)) ifeq ($(_HELP_NAME_WIDTH),$(_MAX_HELP_DESCRIPTION_LENGTH)+20) define help = include .env.example Dockerfiles/makefiles/* *.mk *.sh *.py *.php *.rb *.js *.jsx *.ts *.tsx *.css *.scss *.{coffee,jade,litcoffee,literate-coffee,yaml,yml,json} endef += $@ ifeq ("","$(${HELP_TARGETS_DESCRIPTIONS}))") .help-target-descriptions= .help-target-descriptions+:=$(^:.*/=%:%description:.mk,.sh,.py,.rb,.js,.jsx,.ts,.tsx,.css,.scss,.coffee,.jade,.litcoffee,.literate-coffee,.yaml,.yml,.json:.mk=.md.sh=.md.py=.md.rb=.md.js=.md.jsx=.md.ts=.md.tsx=.md.css=.md.scss=.md.coffee=.md.jade=.md.litcoffee=.md.literate-coffee:.yaml=yml:.json=json:.mk=Dockerfiles/makefiles/%:%description:=Dockerfiles/makefiles/%/README.md:Dockerfiles/makefiles/%:%description:=Dockerfiles/makefiles/%/Makefile.envvars:Dockerfiles/makefiles/%:%description:=Dockerfiles/makefiles/%/Makefile.dependencies:Dockerfiles/makefiles/%:%description:=Dockerfiles/makefiles/%/Makefile.helpers:Dockerfiles/makefiles/%:%description:=Dockerfiles/makefiles/%/Makefile.services:Dockerfiles/makefiles/%:%description:=Dockerfiles/makefiles/%/Makefile.targets:Dockerfiles/makefiles/%:%description:=Dockerfiles/make files/%/Makefi le.target s.test:Dock erfi les//makefi les//%:%de scription:=Dock erfi les//makefi les//%/README.md.Dock erfi les//makefi les//%:%de scription:=Dock erfi les//makefi les//%/Makefil e.envvars.Dock erfi les//makefi les//%:%de scription:=Dock erfi les//makefi les//%/Makefil e.dependenc es.Dock erfiles //makef ile s///%:%de scription:=Dock er fi le s///makef ile s///%/Ma kefil e.helpe rs.Dock er fi le s///ma kef ile s///%:%de scrip tion:=Do cker fi le s///ma kef ile s///%/Mak efil e.servic es.Dock er fi le s///ma kef ile s///%:%de scrip tion:=Do cker fi le s///ma kef ile s///%/Mak efil etargets.Dock er fi le s///ma kef ile s///%:%de scrip tion:=Do cker fi le s///ma kef ile s///%/Mak efil etargets.t est.Dock er fi le s///mak efile //% .help-target-descriptions+=./%.mk:/% .help-target-descriptions+=./%.sh:/% .help-target-descriptions+=./%.py:/% .help-target-descriptions+=./%.rb:/% .help-target-descriptions+=./%.js:/% .help-target-descriptions+=./%.jsx:/% .help-target-descriptions+=./%.ts:/% .help-target-descriptions+=./%.tsx:/% .help-target-descriptions+=./%.css:/% .help-target-descriptions+=./%.scss:/% .help-target-descriptions+=./%.coffee:/% .help-target-descriptions+=./%.jade:/% .help-target-descriptions+=./%.litcoffee:/% .help-target-descriptions+=./%.literate-coffee:/% .endofline-if-exists= .endofline-if-exists+=$(wildcard ./%) .endofline-if-exists+=$(wildcard ./*.mk) .endofline-if-exists+=$(wildcard ./*.sh) .endofline-if-exists+=$(wildcard ./*.py) .endofline-if-exists+=$(wildcard ./*.rb) .endofline-if-exists+=$(wildcard ./*.js) .endofline-if-exists+=$(wildcard ./*.jsx) .endofline-if-exists+=$(wildcard ./*.ts) .endofline-if-exists+=$(wildcard ./*.tsx) .endofline-if-exists+=$(wildcard ./*.css) .endofline-if-exists+=$(wildcard ./*.scss) .endofline-if-exists+=$(wildcard ./*.coffee) .endofline-if-exists+=$(wildcard ./*.jade ) .endol ine-if-e xist+s=${END_OF