M15 Kuala Lumpur stats & predictions
The Exciting Tennis M15 Kuala Lumpur Malaysia Event
The Tennis M15 Kuala Lumpur Malaysia tournament is one of the most anticipated events in the tennis calendar. With its rich history and vibrant atmosphere, it attracts players and spectators from all over the world. This year, the event is set to feature some thrilling matches tomorrow, promising an unforgettable experience for tennis enthusiasts.
No tennis matches found matching your criteria.
Overview of the Tournament
The M15 Kuala Lumpur Malaysia tournament is part of the ATP Challenger Tour, which serves as a crucial stepping stone for players aiming to break into the top ranks of professional tennis. The tournament features a mix of seasoned professionals and emerging talents, all competing for glory on one of Asia's most prestigious courts.
Key Players to Watch
- Player A: Known for his powerful serve and aggressive playstyle, Player A has been making waves in recent tournaments. His performance here could be a game-changer.
- Player B: With a reputation for strategic gameplay and mental toughness, Player B is always a tough competitor. His matches are often closely contested.
- Player C: A rising star in the tennis world, Player C has shown remarkable skill and potential. Keep an eye on this young talent as he aims to make his mark.
Tournament Format
The tournament follows a single-elimination format, ensuring that only the best players advance through each round. The competition is fierce, with each match determining who moves closer to the coveted title.
Match Predictions and Betting Insights
Betting predictions for tomorrow's matches are based on a combination of player statistics, recent performances, and expert analysis. Here are some key insights:
- Match 1: Player A vs. Player D: Player A is favored due to his strong recent form and powerful serve. However, Player D's defensive skills could make this match highly competitive.
- Match 2: Player B vs. Player E: This match is expected to be closely contested. Both players have similar styles, making it difficult to predict a clear winner.
- Match 3: Player C vs. Player F: As a rising star, Player C is predicted to have an edge over Player F, who has struggled with consistency in recent tournaments.
Tips for Placing Bets
To maximize your betting success, consider these tips:
- Analyze player statistics and recent performances carefully before placing bets.
- Consider factors such as playing surface conditions and player form on the day of the match.
- Diversify your bets across different matches to spread risk.
The Venue: Kuala Lumpur's Iconic Courts
Kuala Lumpur's tennis courts are renowned for their excellent condition and stunning location. Nestled amidst lush greenery and modern architecture, they provide an ideal setting for both players and spectators alike.
Historical Significance
The venue has hosted numerous prestigious tournaments over the years, contributing significantly to its reputation as one of Asia's premier tennis destinations. Many legendary matches have taken place here, adding to its allure.
Amenities and Facilities
The venue offers state-of-the-art facilities including comfortable seating areas for spectators, high-quality refreshments stands, and ample parking space. These amenities enhance the overall experience for everyone attending the event.
Social Media Buzz Around Tomorrow's Matches
Social media platforms are buzzing with excitement about tomorrow's matches at the Tennis M15 Kuala Lumpur Malaysia tournament. Fans are eagerly discussing their favorite players' chances while sharing predictions about upcoming games.
- "Can't wait to see how @PlayerA performs against @PlayerD! #TennisM15KL" - Twitter user @Fan1234
- "The atmosphere at KL courts is always electric! Hope my predictions come true tomorrow! #TennisFever" - Instagram user @TennisLover89
- "Who do you think will win today? I'm rooting for @PlayerC! #RisingStar" - Facebook user JaneDoeSportsFanatic
Fan Engagement Activities During Tomorrow’s Matches
In addition to thrilling matches on court today at Tennis M15 Kuala Lumpur Malaysia tournament fans can enjoy various engaging activities throughout day including meet-and-greet sessions with top players after their respective games interactive fan zones where they can participate in fun challenges quizzes related trivia contests regarding sport itself live commentary sessions by experienced commentators providing insightful analysis during every match photo opportunities with favorite athletes autograph signings merchandise stalls selling exclusive limited edition items etc These activities not only add value but also create memorable experiences enhancing overall enjoyment level surrounding event making it truly special occasion worth attending!
Meet-and-Greet Sessions with Top Players
Fans have a unique opportunity to interact personally with their favorite athletes during meet-and-greet sessions held post-match at designated areas within venue premises allowing them get closer insight into life journey achievements inspirations behind success stories inspiring future generations aspiring sports stars alike!
Fan Zones & Interactive Challenges
- Fans can participate in fun challenges such as "Serve Like a Pro" or "Forehand Accuracy Test."
- Creative quizzes test knowledge about tennis history or current events related specifically tournament happening right now! 1, "'num_folds' must be greater than 1 when using cross-validation." <|repo_name|>lmj2018/chemprop<|file_sep>/chemprop/train.py import argparse import logging.config import math import numpy as np import torch.nn.functional as F from torch.utils.data import DataLoader from tqdm import tqdm,trange,tqdm_notebook,pbar_notebook,pbar_steady,pbar_td,pbar_pudb,pbar_xonsh,pbar_shells,pbar_prompt_toolkit,pbar_ttyrec,pbar_attrdict,pbar_logger,pbar_ipythonqt,pbar_ipythonconsole,pbar_jupyterlab,pbar_jupyterconsole,pbar_qtconsole from chemprop.data.utils import get_task_data_loaders,get_task_data_loaders_cv,get_task_data_loaders_test,get_task_data_loaders_predict from chemprop.args_utils import parse_args_predict,get_default_model_args,get_default_dataset_args,get_default_train_args from chemprop.models.registry import MODELS from chemprop.train_utils import makedirs,dump_json,set_random_seeds,set_logger_level,dump_pickle,clean_gpu_cache,scheduler_with_warmup,torch_save_checkpoint,torch_load_checkpoint from chemprop.trainer_utils import setup_logging,default_num_workers from chemprop.utils import init_distributed_mode,get_git_description logger=logging.getLogger(__name__) def train(model,args,model_args,data_args,**kwargs): """Train model.""" task_names=args.task_names model=model_class(**model_args,**kwargs) makedirs(args.output_directory) # ============================================================================= # dump_json(args,output=os.path.join(args.output_directory,"args.json")) # ============================================================================= # ============================================================================= # dump_json(model_args,output=os.path.join(args.output_directory,"model_args.json")) # ============================================================================= # ============================================================================= # dump_pickle(model,output=os.path.join(args.output_directory,"model.pkl")) # ============================================================================= # ============================================================================= # dump_pickle(model.state_dict(),output=os.path.join(args.output_directory,"model_state_dict.pkl")) # ============================================================================= def predict(model,args,model_args,data_args,**kwargs): """Predict using model.""" task_names=args.task_names data_splits=args.data_splits if args.prediction_type=="regression": prediction_transform=lambda y_pred,y_std:np.concatenate([y_pred[:,None],y_std[:,None]],axis=-1) else: prediction_transform=lambda y_pred,y_std:y_pred if args.cross_validation: data_loaders=get_task_data_loaders_cv(task_names,args.data_paths,args.num_folds,data_args) else: data_loaders=get_task_data_loaders_predict(task_names,args.data_paths,data_splits,data_args) for task_id,(task_name,data_loader)inenumerate(zip(task_names,data_loaders)): logger.info(f"Evaluating {task_id+1}/{len(task_names)} tasks...") with torch.no_grad(): predictions=predict_on_loader(model=model, data_loader=data_loader, batch_size=args.batch_size, use_gpu=args.use_gpu, use_progress_bar=args.use_progress_bar, prediction_transform=prediction_transform) dump_predictions(predictions=predictions, task_id=task_id, output_directory=args.output_directory) if args.save_model: torch_save_checkpoint(object=model,output=args.model_checkpoint) def predict_on_loader(model,data_loader,batch_size=50, use_gpu=False, use_progress_bar=True, prediction_transform=lambda y_pred,y_std:y_pred): """Predict on given data loader.""" progress_bar=tqdm_notebook(total=len(data_loader.dataset),desc="Predicting")if use_progress_bar else None predictions=[] for batch in data_loader: if use_progress_bar: progress_bar.update(batch_size) x,y_true=batch y_pred,y_std=model.predict(x=x,batch_size=batch_size) y_pred=prediction_transform(y_pred=y_pred,y_std=y_std) predictions.append(y_pred) if use_progress_bar: progress_bar.close() return np.concatenate(predictions,axis=0) def dump_predictions(predictions:list, task_id:int, output_directory:str): """Dump predictions.""" makedirs(output_directory) filename=f"predictions_{task_id}.csv" filepath=os.path.join(output_directory,filename) with open(filepath,'w')asf: for prediction in predictions: f.write(",".join(map(str,map(float,prediction)))+"n") def evaluate(model,args,model_args,data_args,**kwargs): """Evaluate model.""" task_names=args.task_names if args.cross_validation: data_loaders=get_task_data_loaders_cv(task_names,args.data_paths,args.num_folds,data_args) else: data_loaders=get_task_data_loaders_test(task_names,args.data_paths,data_splits=data_splits,data_args=data_args) metrics={} for task_id,(task_name,data_loader)inenumerate(zip(task_names,data_loaders)): logger.info(f"Evaluating {task_id+1}/{len(task_names)} tasks...") metrics.update({task_id:_evaluate_on_loader(model=model, data_loader=data_loader, batch_size=args.batch_size, use_gpu=args.use_gpu)}) return metrics def _evaluate_on_loader(model:data.DataLoader,batch_size=50, use_gpu=False): """Evaluate on given data loader.""" y_preds=[] y_trues=[] progress_bar=tqdm_notebook(total=len(data_loader.dataset),desc="Evaluating")if use_progress_bar else None for batch in data_loader: if use_progress_bar: progress_bar.update(batch_size) x,y_true=batch y_pred=model.predict(x=x,batch_size=batch_size) y_preds.append(y_pred.cpu().numpy()) y_trues.append(y_true.numpy()) if use_progress_bar: progress_bar.close() return y_preds=np.concatenate(y_preds,axis=0), y_trues=np.concatenate(y_trues,axis=0) def evaluate_metrics(y_trues:list,np.ndarray,y_preds:list,np.ndarray,masks:list,np.ndarray,num_tasks:int): """Evaluate metrics.""" metrics={} for task_id inrange(num_tasks): metric_results=_evaluate_metrics(y_true=y_trues[:,task_id], y_pred=y_preds[:,task_id], mask=masks[:,task_id]) metrics.update({f"{TASK_NAME} {metric}":valuefor metric,valueinmetric_results.items()}) return metrics def _evaluate_metrics(y_true:list,np.ndarray,y_pred:list,np.ndarray,*args,**kwargs): """Compute evaluation metrics.""" assert len(y_true)==len(y_pred),"Lengths of y_true (%d) != length of y_pre (%d)."%(len(y_true),len(y_pred)) assert len(np.where(np.isnan(np.array([float(i)for iin y_true])))[0])==0,"NaN detected." assert len(np.where(np.isnan(np.array([float(i)for iin y_pred])))[0])==0,"NaN detected." metric_results={} if np.alltrue(masks[:,i]): metric_results[f"rmse"]=(np.sqrt(F.mse_loss(torch.tensor(y_trues[:,i]).double(),torch.tensor(y_preds[:,i]).double()))).item() metric_results[f"mae"]=(F.l1_loss(torch.tensor(y_trues[:,i]).double(),torch.tensor(y_preds[:,i]).double())).item() elif args_regression: mean_value=np.mean(list(filter(lambda x:notnp.isnan(x),list(map(float,y_trues))))) median_value=np.median(list(filter(lambda x:notnp.isnan(x),list(map(float,y_trues))))) metric_results[f"mean"]=(mean_value).item() metric_results[f"median"]=(median_value).item() else: mean_value=np.mean(list(filter(lambda x:x!="NA",list(map(str,list(map(float,y_trues))))))) median_value=np.median(list(filter(lambda x:x!="NA",list(map(str,list(map(float,y_trues))))))) metric_results[f"mean"]=(mean_value).item() metric_results[f"median"]=(median_value).item() return metric_results class Trainer(object): """Class that trains models.""" def __init__(self,model_class,model_params,criterion,params_optimizer,scheduler,scheduler_with_warmup,cuda_availability,num_gpus,distributed_run,hparams_setter,**kwargs): self.model_class=model_class self.model_params=model_params self.criterion=criterion self.params_optimizer=params_optimizer self.scheduler=scheduler self.scheduler_with_warmup=scheduler_with_warmup self.cuda_availability=cuda_availability self.num_gpus=num_gpus self.distributed_run=distributed_run self.hparams_setter=hparams_setter @staticmethod def default_hparams_setter(hparams_setter,*args,**kwargs): """Set hyperparameters.""" default_hparams_setter._set_hyperparameters(hparams_setter,*args,**kwargs) @staticmethod def _set_hyperparameters(hparams_setter,*args,**kwargs): """Set hyperparameters.""" hyperparameters=dict(*args,**kwargs) if hasattr(hparams_setter,"__call__"): setattr(hparams_setter,"__call__")(hyperparameters) else: setattr(hparams_setter,hyperparameters.keys())(hyperparameters.values()) @classmethod def get_default_hparams(cls,model_class=None,criterion=None,params_optimizer=None,scheduler=None,scheduler_with_warmup=None,cuda_availability=False,num_gpus:int,distributed_run=False,hparams_setter=default_hparams_setter)->dict: """Get default hyperparameter values.""" default_hparam_values={} default_hparam_values["model_class"]=model_class orMODELS.get_default_model() default_hparam_values["criterion"]=criterion orMODELS.get_default_criterion() default_hparam_values["optimizer"]=optimizer orMODELS.get_default_optimizer() default_hparam_values["scheduler"]=scheduler orMODELS.get_default_scheduler() default_hparam_values["scheduler_with_warmup"]=scheduler_with_warmuporMODELS.get_default_scheduler_with_warmup() default_hparam_values["cuda_availability"]=cuda_availability default_hparam_values["num_gpus"]=num_gpus default_hparam_values["distributed_run"]=distributed_run default_hparam_values["hparams_setter"]=hparams_setterorcls.default_hparams_setter return default_hparam_values @classmethod def from_argparse(cls,argparse_namespace_or_parser,*args,**kwargs)->Trainer: """Initialize trainer from argparse namespace or parser.""" argparse_namespace_or_parser_type=str(type(argparse_namespace_or_parser)) argparse_namespace_or_parser_type_contains_argparse_namespace=str("argparse.Namespace")in argparse_namespace_or_parser_type argparse_namespace_or_parser_type_contains_argparse_parser=str("argparse.ArgumentParser")in argparse_namespace_or_parser_type assert argparse_namespace_or_parser_type_contains_argparse_namespaceor argparse_namespace_or_parser_type_contains_argparse_parser, "Necessary conditions unmet." argparse_parsed_arguments={} if argparse_namespace_or_parser_type_contains_argparse_namespace:# ArgumentParser.parse_known_argument was used insteadof parse_known_arguments because I wantto include arguments that weren't parsedby ArgumentParser.add_argument but were still passedto ArgumentParser.parse_known_argumentssuchas --git_description when trainingon remote cluster nodes via slurm jobscript rather than directly via command line argumentsoptions parsing doesn't work properly when runningslurm jobs because slurm environment variablesare passed directly onto script without beingparsed by ArgumentParser.add_argumentsoptionally pass git description argument manuallyvia --git_description option when runningslurm job scripts so it gets parsed correctlyand added into argparse_parsed_arguments dictionaryinstead of being ignored by ArgumentParser.parse_known_arguments argparse_parsed_arguments.update(vars(argparse_namespace_or_parser)) elif argparse_namespace_or_parser_type_contains_argparse_parser:# ArgumentParser.parse_known_argument was used insteadof parse_known_arguments because I wantto include arguments that weren't parsedby ArgumentParser.add_argument but were still passedto ArgumentParser.parse_known_argumentssuchas --git_description when trainingon remote cluster nodes via slurm jobscript rather than directly via command line argumentsoptions parsing doesn't work properly when runningslurm jobs because slurm environment variablesare passed directly onto script without beingparsed by ArgumentParser.add_argumentsoptionally pass git description argument manuallyvia --git_description option when runningslurm job scripts so it gets parsed correctlyand added into argparse_parsed_arguments dictionaryinstead of being ignored by ArgumentParser.parse_known_arguments parser_passed_as_second_position_to_parse_known_argument=*argsindexof parser_passed_as_second_position_to_parse_known_argumentis 1* argument_passed_as_third_position_to_parse_known_argument=*argsindexof argument_passed_as_third_position_to_parse_known_argumentis 2* parser_passed_as_second_position_to_parse_known_argument.has_option("--git_description")or argument_passed_as_third_position_to_parse_known_argument.startswith("--git_description"): # Check whether--git_description option was passedas third position argument manually so it getsparsed correctlyand added into argparse_parsed_argumentsdictionaryinstead of being ignored byArgumentParser.parse_known_arguments argparse_parsed_arguments.update(parser_passed_as_second_position_to_parse_known_argument.parse_knownarguments(argument_passed_as_third_position_to_parse_known_argument)[0]) else:# Otherwise assume no options were passedthat weren't already includedin ArgParseNamespace object providedby first position arguemnt *argsindexof first_position_argumetnis 0* argparse_parsed_arguments.update(vars(argparse_namespace_or_parser)) required_keys=set(cls.get_default_hyperparameter_keys())-{keyforsomekeyin cls.get_default_hyperparameter_keyswithoutvalues()} # Keys without default valuesmust be provided either via ArgParseNamespaceobject or second/third positionargumentsotherwise AssertionError raised belowwill trigger error message indicatingwhich required keys were missing missing_required_keys=set(required_keys)-set(argparse_parsed_arguments.keys()) # Check whether any required keys weremissing from ArgParseNamespace objector second/third position argumentsprovided assert len(missing_required_keys)==0,f"Some required keys missing:{missing_required_keys}" # Raise AssertionError errormessage indicating which requiredkeys were missing otherwise continueinitializing Trainer object usinghyperparameter values provided byArgParseNamespace object orsecond/third position argumentsprovided return cls(**{**cls.get_default_hyperparameter_keyswithoutvalues(),**argparse_parsed_arguments}) # Initialize Trainer objectusing hyperparameter values providedby ArgParseNamespace object ortwo/three position argumentsprovided along with defaultvalues specified by get_default_hyperparameter_keyswithoutvalues method @classmethod def get_required_hyperparameter_keys(cls)->set:str: """Get set of required hyperparameter keys.""" required_keys=set(cls.get_default_hyperparameter_keys())-{keyforsomekeyin cls.get_default_hyperparameter_keyswithoutvalues()} # Keys without default valuesmust be provided either via ArgParseNamespaceobject or second/third positionargumentsotherwise AssertionError raised belowwill trigger error message indicatingwhich required keys were missing return required_keys @classmethod def get_optional_hyperparameter_keys(cls)->set:str: """Get set of optional hyperparameter keys.""" optional_keys=set(cls.get_default_hyperparameter_keyswithoutvalues()).intersection(set(cls.get_required_hyperparameter_keys())) # Keys without default valuescan be provided optionally eithervia ArgParseNamespace object ortwo/three position argumentsprovided otherwise AssertionErrorraised below will trigger errormessagindicating which optionalkeys were missing otherwisecontinue initializing Trainerobject using hyperparametervalues provided by ArgParseNamespacobject ortwo/three positionargumentsprovided along with defaultvalues specified by get_optionalhyperparemeter keyswithoutvalues method return optional_keys @classmethod def get_all_hyperparmeter_keys(cls)->set:str: """Get set of all hyperparmeter keys.""" all_keys=set.union(set(cls.get_required_hyperparmeterkeys()),set(cls.get_optionalhyperparmeterkeys())) # Combine sets returnedby get_required_hyperparmeterkeys methodand get_optional_hyperparmeterkeys methodinto single set representing allpossible hyperparmeter keysused throughout codebase return all_keys @classmethod def get_all_optional_and_required_keyword_arugments(cls)->dict:str->any:Any: """Get dict mapping keyword arguments names totypes.""" all_keyword_arugments={**cls.model_class._get_all_optional_and_requiredkeyword_arugments(),**cls.criterion._get_all_optional_andrequiredkeyword_arugments(),**cls.optimizer._get_all_optional_andrequiredkeyword_arugments(),**cls.scheduler._get_all_optional_andrequiredkeyword_arugments(),**cls.scheduler_with_warmup._get_alloptional_and_requiredkeyword_arugments()} # Combine dictionaries returnedby _get_all_optional_and_requiredkeyword arugment methods belongingto model class criterion optimizer schedulerand scheduler with warm up objectsinto single dictionary representingall possible keyword arugment names typesused throughout codebase all_keyword_arugments.pop("__name__",None)# Remove special keyword arugment __name__which doesn't belong anywhere sinceit isn't actually used anywhere withincodebase just present here purely astype annotation placeholder thereforeunecessary remove before returningfinal dictionary mapping keywordarugment names types used throughoutcodebase all_keyword_arugments.pop("__qualname__",None)# Remove special keyword arugment __qualname__which doesn't belong anywhere sinceit isn't actually used anywhere withincodebase just present here purely astype annotation placeholder thereforeunecessary remove before returningfinal dictionary mapping keywordarugment names types used throughoutcodebase return all_keyword_arugments @classmethod classmethod get_allowed_parameter_types_for_each_parameter_clsmethod->dict:class->tuple:any:(type,None)::Any->Any:"""Get dict mapping parameter classes totuples specifying allowed parameter types.""" allowed_parameter_types_for_each_parameter_cls={} allowed_parameter_types_for_each_parameter_cls[model_class]=tuple([type(None)]+list(set(getattr(param_obj.__module__, param_obj.__class__.__qualname__)._fields))) allowed_parameter_types_for_each_parameter_cls[criterion]=tuple([type(None)]+list(set(getattr(param_obj.__module__, param_obj.__class__.__qualname__)._fields))) allowed_parameter_types_for_each_parameter_cls[optims]=tuple([type(None)]+list(set(getattr(param_obj.__module__, param_obj.__class__.__qualname__)._fields))) allowed_parameter_types_for_each_parameter_cls[scheduler]=tuple([type(None)]+list(set(getattr(param_obj.__module__, param_obj.__class__.__qualname__)._fields))) allowed_parameter_types_for_each_parameter_cls[scheduler_with_warmup]=tuple([type(None)]+list(set(getattr(param_obj.__module__, param_obj.__class__.__qualname__)._fields))) return allowed_parameters_for_each_parameer_clsmethod ==============================>>> Start HERE <<<<<<<<<<<<============================== ============================================================================== ============================================================================== =====================================>>>>>>> START HERE <<<<<<<<<<<<<<===================================== ===================================================================================== ===================================================================================== ===================================================================================== ===================================================================================== ===================================================================================== ===================================================================================== ===================================================================================== ===================================================================================== ===================================================================================== ===================================================================================== ============================================================================== ==============================================================================<|repo_name|>lmj2018/chemprop<|file_sep|>/scripts/cross_validate.py<|file_sep|># -*- coding:utf-8 -*- """ Module containing functions that perform preprocessing steps necessary before featurizing molecules. """ import collections as collibrarycollectionslibrarycollibrarycollectionslibrarycollectionslibrarycolllibrarycollclllibrarycollectionlrycolllibrarycollectionslibraarycollectionlrycolllibrarycollclllibrarycollectionlrycolllectionslibrarycollectionslibrarycollectionarycollcclllibrarycollectionaarycollectionslibrarycolectionarycollabrarycollectionslibrarycollectioonarycolllectionslibrarycolectionarycolllectionslibrariesollectionarycollectionslibraaycollectionslibrariescollectionarycollctionslibrariescollectionariesollectionslibrariescolectionariescollecllsionariescollecctionslibrariescolectionariesccollectionslibrariescoleccolletionariesccollctioanriesccollctionariesccollctioanriesccollctionariessccollictionariesccollictionariesscollectionslibrariescolectionariessscollctionariessscollictionariessscollctioanriessscollctioanriessscollctioanriessscollctionariesscclllctioanriessccllcctionariessccllcctionariessccllcctionariecsscccccccccccccccccccccccccccccccccccctionslibrariescolecsionslibrariescolecsonirieslibsraiescolesonsirieslibsraiescolesonsirieslibsraiescolesonsirieslibsraiescolesonsiriesslibsraiecolesonsiriesslibsraiiecolesonsiriesslibsraiiecolesonsiriisslibsraiieecolesoniisslibsraiieecolesoniisslibsraiieecoesniisslibsraiieecoesniissibsraisiecoseinisssibsraisiecoseinisssibsraisiecoseinissssibsraisiecoseinissssibsraisiceosneisissssibsraisiceosneisissssibsrainsiceosneisissssibsrainsiceosneisissssibsrainsceoneissssibsrainsecnoeissssibsrainsecnoeissssibsrainsecnoeissssibsrainsecnoeissssisbrinsacenoeeisssisbrinsacenoeeisssisbrinsacenoeeisssisbrisnaecnoeeseisssisbrisnaecnoeeseisssisbrisnaeceoneeesiisssbisrisnaeceoneeesiisssbisrisnaeceoenseeiiisssbisrisnaeceoenseeiiisssbisrisnaceoenseeiiisssbisrisnaceoenseeiiisssbsirisnaceoenseeiiisssbsirisnaceoenseeiiisssbsirisnceoeenseeiiisssbsirisnceoeenseeiiisssbsirisnceoennseeiiissscbrisnceoennseeiiiscbcrijsncenoennseeniscbcrijsncenoennseeniscbcrijsncenoennseeniscbcirjsncedonneenensicbcirjsncedonneenensicbcirjsncedonneenensicsbcircnedonneeenensicsbcircnedonneeenensicsbcircnedonneneesnsicsbcircnedonneneesnsicsbcircnedonneneesnsicsbcrincdenonneeesnsicsbcrincdenonneeesnsicsbcrincdenonneeesntcsibrincdeoonneeentcsibrincdeoonneeentcsibrincdeoonneeentcsibrindceoonneeentcsibrindceoonneeentcsibrindceoonneeentcsibriindcoeoneeeentscribindcoeoneeeentscribindcoeoneeeentscribindcoeoneeeentscribindocoeeneeeeetscrribidnocoeeneeeeetscrribidnocoeeneeeeetscrribidnocoeeneeeeetscrribidnocoeeneeeeetscrrbidnonceeefetscrribidonceeefetscrribidonceeefetscrribidonceeefetscrribidonccefeetsrrbidonccefeetsrrbidonccefeetsrrbidonccefeestsrrbiidonccefeestsrrbiidonccefeestsrrbiidonccefeestsrrbiiodcncefteesrsrbiodcncefteesrsrbiodcncefteesrsrbiodcncefteesrsrbiodcncefteeetrbrisoecnffeedtrbrisoecnffeedtrbrisoecnffeedtrbrisoecnffeedtrbrisocnnfffedtrbrisocnnfffedtrbrisocnnfffedtrbrisconnnffeeetrbrisconnnffeeetrbrisconnnffeeetrbrisconnnfeeettbriscnonnfheeettbriscnonnfheeettbriscnonnfheeettbriscmonnfheeettbrismconmfheeeettsmrismcomnmheeeettsmrismcomnmheeeettsmrismcomnmheeeettsmrismcmomnheteestmsrimsomnomhetestmsrimsomnomhetestmsrimsomnomhetestmsrimsommohetestmsrimsmommohetestmsrimsmommohetestmsrimsmommoheteestmrismmoomoheteestmrismmoomoheteestmrismmoomoheteestmrismmmoomheeeeeestmmrsimmoomheeeeeestmmrsimmoomheeeeeestmmrsimmoomheeeeeestmmrsimmoomeeeeeesstmmrmsimmoomeeeeeesstmmrmsimmoomeeeeeesstmmrmsimmooemeeeeeesstmmrmsimmooemeeeeeesstmmrssimmmoemeeeeeesstmmrssimmmoemeeeeeesstmmrssimmmoemeeeeeesstmmmriimoemeeeeeseemmriimoemeeeeeseemmriimoemeeeeeseemmriimoemeeeeeseemmriiommeeeeeseemmriiommeeeeeseemmroimmeeeeeseemmroimmeeeeeseemmroimmeeeeeseemmeoirmmeeeeeseemmeoirmmeeeeeseemmeoirmmeeeeeseemmeoirmmeeeeeeesenneeoirmmeeeeeeesenneeoirmmeeeeeeesenneeoirmneooooeesenneeoirmneoooo