Overview of Skalica Ice-Hockey Team
The Skalica ice-hockey team, hailing from Slovakia, competes in the Slovak Extraliga. Established in 1947, the team has become a staple in Slovak hockey culture. Under the leadership of their current coach, they aim to maintain a competitive edge within the league.
Team History and Achievements
Skalica boasts a rich history filled with notable achievements. They have clinched several league titles and have consistently finished in top positions. Their most remarkable seasons include multiple championships and accolades that highlight their prowess on the ice.
Current Squad and Key Players
The squad features a blend of seasoned veterans and promising young talent. Key players include star forwards and defensemen known for their exceptional skills. The team’s top performers are instrumental in driving their success in matches.
Key Players
- Forward: Known for scoring ability and agility.
- Defenseman: Renowned for defensive skills and playmaking.
Team Playing Style and Tactics
Skalica employs a dynamic playing style characterized by aggressive offense and solid defense. Their tactics often involve fast transitions and strategic formations that exploit opponents’ weaknesses while reinforcing their strengths.
Strengths & Weaknesses
- ✅ Strengths: Strong offensive plays, cohesive teamwork.
- ❌ Weaknesses: Occasional lapses in defense, penalty issues.
Interesting Facts and Unique Traits
The team is affectionately known by fans as “The Warriors of Skalica.” They have a passionate fanbase that supports them through thick and thin. Rivalries with other teams add excitement to their games, while traditions like pre-game rituals keep the spirit alive.
Fanbase & Traditions
- Famous chants during home games.
- Rivalry matches that draw large crowds.
Lists & Rankings of Players, Stats, or Performance Metrics
- ✅ Top Scorer: Player A with X goals this season.
- 🎰 Best Playmaker: Player B with Y assists.
- 💡 Defensive Leader: Player C with Z blocks per game.
Comparisons with Other Teams in the League or Division
Skalica is often compared to top-tier teams in terms of skill level and strategic play. While they share similarities with rivals like Team X, Skalica’s unique approach to games sets them apart as formidable competitors.
Case Studies or Notable Matches
A standout match was their recent victory against Team Y, which showcased their tactical brilliance and resilience under pressure. This game is considered a breakthrough performance for Skalica this season.
Detailed Match Analysis
- Innovative strategies led to a decisive win.
- Critical moments where key players shined.
Tables Summarizing Team Stats, Recent Form, Head-to-Head Records, or Odds
| Tactic/Stat Category | Last 5 Games Form (W/L) |
| Average Goals Scored per Game | X.XX (4W-1L) |
| Average Goals Conceded per Game | X.XX (4W-1L) |
| Total Wins vs Total Losses This Season | XW – YL (Overall) |
Tips & Recommendations for Analyzing the Team or Betting Insights 💡 Advice Blocks
- Analyze head-to-head records against upcoming opponents to gauge potential outcomes.
- Closely monitor player form leading up to matches for betting decisions.
- Evaluate recent changes in coaching strategies that might impact performance.
Betting Strategy Tips 💡
To maximize your betting potential on Skalica:
- Favor bets on over/under goals when facing defensively strong teams.
- Leverage insights from recent player statistics for informed decisions.
- Analyze odds trends over time to spot value bets.
- Maintain awareness of injuries or suspensions affecting key players.
- Predict outcomes based on historical performance data.
- Carefully consider weather conditions impacting outdoor events.
- Bet conservatively during high-stakes tournaments where volatility is higher.
- Prioritize understanding team morale shifts post-key victories or losses.
- Evaluate referee tendencies if they significantly influence game flow.
- Maintain flexibility in adjusting bets as new information becomes available.
Betting Strategy Tips 💡
To maximize your betting potential on Skalica:
Quotes or Expert Opinions About the Team (Quote Block)
“Skalica’s blend of youthful energy and experienced leadership makes them an unpredictable yet formidable force,” says hockey analyst John Doe. “Their adaptability on ice often catches opponents off guard.”
Pros & Cons of the Team’s Current Form or Performance ✅❌ Lists
✅ Pros:
- Solid offensive strategy yielding consistent scoring opportunities.
- Cohesive teamwork enhancing overall performance.
- Inspiring leadership from veteran players setting positive examples.
❌ Cons:
Sporadic defensive errors leading to unnecessary goals conceded.
Potential fatigue from back-to-back games affecting stamina.
Injuries disrupting line-up stability.
## FAQ Block
What are some key strengths of Skalica’s current lineup?</h3
The team’s key strengths lie in its aggressive offensive strategies supported by strong midfield control which allows them to dominate possession effectively during matches.
I’m interested in betting on upcoming matches involving Skalica; what should I consider?</
[0]: #!/usr/bin/env python
[1]: import sys
[2]: import os.path
[3]: import os
[4]: import shutil
[5]: import glob
[6]: import numpy as np
[7]: def read_file(filename):
[8]: f = open(filename)
[9]: lines = f.readlines()
[10]: f.close()
[11]: return lines
[12]: def write_file(filename,data):
[13]: f = open(filename,'w')
[14]: f.write(data)
[15]: f.close()
[16]: def get_atom_positions(lines):
[17]: n_atoms = int(lines.pop(0))
[18]: atom_positions = []
[19]: for i_atom in range(n_atoms):
[20]: line = lines.pop(0)
[21]: x,y,z,symbol,mass,radius,vx,vy,vz,q,x0,y0,z0,norm_x,norm_y,norm_z,potential_energy,kinetic_energy,total_energy,dipole_moment_x,dipole_moment_y,dipole_moment_z,dipole_moment_norm= line.split()
atom_positions.append([float(x),float(y),float(z),symbol,float(mass),float(radius)])
return atom_positions
def get_box_dimensions(lines):
xlo_bound,xhi_bound,ylo_bound,yhi_bound,zlo_bound,zhi_bound=lines.pop(0).split()
xlo_bound=float(xlo_bound)
xhi_bound=float(xhi_bound)
ylo_bound=float(ylo_bound)
yhi_bound=float(yhi_bound)
zlo_bound=float(zlo_bound)
zhi_bound=float(zhi_bound)
box=[xlo_bound,xhi_bound,ylo_bound,yhi_bound,zlo_bound,zhi_boundary]
return box
def write_lammps_data_file(filename,natoms,nlocality_regions,list_locality_regions,data_file_lines):
data_file_lines.append(str(natoms)+'n')
data_file_lines.append(' '.join([str(len(list_locality_regions)),str(nlocality_regions)])+'n')
for i_region,count_atoms_in_region,str_region_type,str_region_name,str_region_description,str_region_definition,str_region_commentary,str_region_constraints_str,str_region_bonds_str,str_region_angles_str,str_region_dihedrals_str,str_region_impropers_str,list_atom_indices_in_region,inverse_list_atom_indices_in_region,inverse_list_inverse_atom_indices_in_region,list_bond_pairs_in_region,list_angle_triples_in_region,list_dihedral_quadruples_in_region,list_improper_quadruples_in_region,bond_length_min,bond_length_max,bond_angle_min,bond_angle_max,dihedral_torsion_min,dihedral_torsion_max,inverse_list_bond_pairs_in_region,inverse_list_angle_triples_in_region,inverse_list_dihedral_quadruples_in_region,inverse_list_improper_quadruples_in_region]in list_locality_regions):
data_file_lines.append(str(count_atoms_in_regio)+' '+str(str_regio_type)+' '+str(str_regio_name)+' '+str(str_regio_description)+'n')
data_file_lines.append(str(count_atoms_in_regio)+' '+str(str_regio_type)+' '+str(str_regio_name)+' '+str(str_regio_definition)+'n')
data_file_lines.append(str(count_atoms_in_regio)+' '+str(str_regio_type)+' '+str(str_regio_name)+' '+str(bond_length_min)+' '+str(bond_length_max)+ ' '+ str(bond_angle_min) +' ' + str(bond_angle_max) + ' ' + str(dihedral_torsion_min) + ' ' + str(dihedral_torsion_max) +'n')
bond_length_min=99999.99999
bond_length_max=-99999.99999
bond_angle_min=99999.99999
bond_angle_max=-99999.99999
dihedral_torsion_min=99999.99999
dihedral_torsion_max=-99999.99999
if not str(list_atom_indices[i])in inverse_list_atom_indices:
inverse_list_atom_indices[str(list_atom_indices[i])]=len(inverse_list_atom_indices)
inverse_list_inverse_atom_indices[len(inverse_list_inverse_atom_indices)]=list_atom_indices[i]
if list_bonds!=[]:
for i_bond_pair,i_bond_pair_members_count,i_bond_pair_member_1,i_bond_pair_member_1_mass,i_bond_pair_member_1_radius,i_bond_pair_member_1_charge,i_bond_pair_member_1_index,i_bond_pair_member_1_symbol,i_bond_pair_member_1_x_coord,i_bond_pair_member_1_y_coord,i_bond_pair_member_1_z_coord,i_bond_pair_member_1_vx_coord,i_bond_pair_member_1_vy_coord,i_bound_pairember_iz_coord,i_bondd_pairember_q,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,junk_inv,inverse_i_junk_not_used_by_this_function_but_needed_for_looping_over_all_items_of_the_tuple_returned_by_get_interatomic_distances_and_localities()in get_interatomic_distances_and_localities():
if list(atom_indices[i],list_atom_indices[i_j])notin list(list(i_j))and list(i_j)==list(atom_index[i],list_iatom_index):
if abs(float(i_jump_distance))bond_length_max:
bond_length_max=float(i_jump_distance)
for i_angle_triple_count,i_angle_triple_members_count,i_angle_triple_member_a_index_mass_radius_charge_coordinates_velocities_symbols_and_extra_data_members_and_extra_data_and_extra_data_and_extra_data_and_extra_data_and_extra_data_and_extra_data,and_extra_data,and_extra_data,and_extra_data,and_extrasdata,and_extrasdata,and_extrasdata,and_extrasdata,in get_interatomic_angles_and_localities()in get_interatomic_angles_and_localities():
if list(atom_index[i],list_iatom_index)==list(angle_triple_members[a_idx],angle_triple_members[c_idx]):
angle_acb=np.arccos((np.dot([atom_pos[a_idx][0]-atom_pos[b_idx][0],atom_pos[a_idx][1]-atom_pos[b_idx][1],atom_pos[a_idx][z]-atom_pos[b_idx][z]], [atom_pos[c_idx][x]-atom_pos[b_idx][x],atom_pos[c_idx][y]-atom_pos[b_idx][y],atom_pos[c_idx][z]-atom_pos[b_idx][z]]))/(distance_ac*distance_bc))
angle_acb_degrees=angle_acb*(180./np.pi)
if angle_acb_degreesbndg_angle_max:
bndg_angle_max=angle_acb_degrees
elif list(atom_index[i],list_iatom_index)==list(angle_triple_members[b_idx],angle_triple_members[a_idx]):
angle_acb=np.arccos((np.dot([atom_pos[a_idx][x]-atom_pos[b_idx][x],atom_pos[a_idx][y]-atom_pos[b_idx][y],atom_pos[a[idx]][z]-atompos[b[idx]][z]], [atomp[cidx[x]]-atomp[bidx[x]],atomp[cidx[y]]-atomp[bidx[y]],atomp[cidx[z]]-atomp[bidx[z]]]))/(distance_ac*distance_bc))
angle_acb_degrees=angle_acb*(180./np.pi)
if angle_acb_degreesbndg_aang_lemax:
bndg_aang_lemax=angle_aacb_degrees
elif list(atom_index[i],list_iatomi_nex)==list(angle_triple_members[cidx],angle_triple_members[bidxx]):
angle_acb=np.arccos((np.dot([atommpos[a_iddx[[x]]]-atommpos[b_iddx[x]],atommpos[a_iddx[y]]-atommpos[b_iddx[y]],atommpos[a_iddx[z]]-atommpos[b_iddx[z]]],[atommpos[c_iddx[x]]-atommpos[b_iddx[x]], atommpos[c_iddx[y]]-atommpos[b_iddx[y]], atommpos[c_iddx[z]]-atommpos[b_iddx[z]])/(distanceac*distancbc)))
angle_aacb_degeees=angle_aacb*(180./np.pi)
if angle_aacb_degeeesbndg_anglemaxx:
bngd_anglemaxxaanglaacbbe_degeees
for i_dhdrl_quaduple_count,idhdrl_quaduple_members_count,idhdrl_quaduple_members,a_index,a_mass,a_radius,a_charge,a_coordinate_x,a_coordinate_y,a_coordinate_z,a_velocity_x,a_velocity_y,a_velocity_z,a_symbol,b_index,b_mass,b_radius,b_charge,b_coordinate_x,b_coordinate_y,b_coordinate_z,b_velocity_x,b_velocity_y,b_velocity_z,b_symbol,c_index,c_mass,c_radius,c_charge,c_coordinate_x,c_coordinate_y,c_coordinate_z,c_velocity_x,c_velocity_y,c_velocity_z,c_symbol,d_index,d_mass,d_radius,d_charge,d_cordinate_x,d_cordinate_y,d_cordinate_z,d_velocity_x,d_velocity_y,d_veloctiy_z,d_symbol,e,f,g,hj,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,junk_for_loop_var_not_used_by_this_function_but_needed_to_loop_over_all_items_returned_by_get_interatomic_dihedrals_and_localities()in get_interatomic_dihedrals_and_localities():
#print(list(atom_indx[i]),list_iatiom_indx)
#print(list(a_indxx),list(b_indxx),list(c_indxx),lis(d_indxx))
#print(idhdrl_quaduple_membeers)
#print()
#print()
#if ((idhdrl_quaduple_membeers==[[a_indxx],[c_indxx],[d_indxx]])and(list(a_indxx),list(c_indxx))==[(a_indx),(c_indx)])or((idhdrl_quaduple_membeers==[[a_indx],[c_indx],[d_indx]])and(list(a_indx),list(c_indx))==[(a_indx),(c_indx)]):
idhdl_quadupel_normal=(np.cross(atmmpos[cindxs] – atmmpos[indxbxs]), np.cross(atmmpos[dindx] – atmmpos[indxbxs]))
idhdl_quadupel_normal=idhdl_quadupel_normal/np.linalg.norm(idhdl_quadupel_normal)
idhdl_cosine=np.dot(idhdl_quadupel_normal,np.cross(atmmpos[indxcxs] – atmmpos[indxbxs])) / np.linalg.norm(np.cross(atmmpos[indxcxs] – atmmpos[indxbxs]))
idhdl_sine=np.dot(np.cross(idhdl_quadupel_normal,np.cross(atmmpos[indxcxs] – atmmpos[indxbxs])), atmmpos[indadx] – atmmpos[idnbxb]) / np.linalg.norm(np.cross(atmmpos[indxcxs] – atmmpos[idnbxb]))
idhdl_phase=np.arctan(idhdl_sine/idhdl_cosine)
idhdl_phase_radians=idhdl_phase*(180./np.pi)
idhdl_phase_radians_corrected=idhdl_phase_radians+180.
if idhdrle_phase_radians_correctedd<=180:
idhdrle_phase_radians_correcrtedd=-idhdrle_phase_radians_correctedd
data_file_lines.append(''.join(['%12f'%bond_lengtmin,'%12f'%bond_lengtmax,'%12f'%bond_anglemmin,'%12f'%bond_anglemmax,'%12f'%dihele_torsionmin,'%12f'%dihele_torsionmax,'n']))
else:
print('Error! No such atom index found!')
data_file_lines.append('nnnnn')
try:
locality_info_dict[str(regions_types)][regoin_names]['number_of_atoms']=len(list_of_atomi_inds)
locality_info_dict[str(regions_types)][regoin_names]['number_of_unique_neighboring_types']=len(set(neighboring_types))
locality_info_dict[str(regions_types)][regoin_names]['neighboring_types']=neighboring_types
locality_info_dict[str(regions_types)][regoin_names]['number_of_unique_neighboring_distances']=len(set(neighboring_distances))
locality_info_dict[str(regions_types)][regoin_names]['neighboring_distances']=neighboring_distances.tolist()
locality_info_dict[str(regions_types)][regoin_names]['mean_neighboring_distance']=mean_neighboring_distance
locality_info_dict[str(regions_types)][regoin_names]['standard_deviation_neighboring_distace']=standard_deviation_neighboring_distace
locality_info_dict[str(regions_types)][regoin_names]['minimum_neighboring_distance']=minimum_neighboring_distance
locality_info_dict[str(regions_types)][regoin_names]['maximum_neighboring_distance']=maximum_neighboring_distance
except KeyError:
locality_info_dict[str(region_type)]={}
try:
locality_info_dict[str(region_type)][region_name]={}
locality_info_dict[str(region_type)][region_name]['number_of_atoms']={}
locality_info_dict[str(region_type)][region_name]['number_of_unique_neighborings']={}
locality_info_dict[str(region_type)][region_name]['neighborings']={}
locality_info_dict[str(region_type)][region_name]['number_of_unique_neighbors']={}
locality_info_dict[str(region_type)][region_name]['neighbors']={}
locality_info_dict=str(region_type)[region_nme]='mean_neighbor']
locality_infodict=str(region_typ)['region_nme']='standard_deviation_neighbor']
locality_infodict=str(region_typ)['region_nme']='minimum_neighbor']
locality_infodict=str(reigon_typ)['region_nme']='maximum_neighbor]
except KeyError:
try:
locailty_infodict['numeber_of_atoems']['numeber_of_uniqunue_neighbors']['neighbors']['mean_neighbor']['standard_deviation_neighbor']['minimum_neighbor']['maximum_neighbor']
except KeyError:
locailty_infodict['numeber_of_atoems']={}
locailty_infodict['numeber_of_uniqunue_neighbors']={}
locailty_infodict['neighbors']={}
locailty_infodict['mean_neighbor']={}
locailty_infodict['standard_deviation_neighbor']={}
locailty_infodict['minimum_neighbor']={}
locailty_infodict['maximum_neighbor']=={}
print('nThe number of atoms within region %s is %d'%(regionname,numofatoms))
print('nThe number of unique neighboring types within region %s is %d'%(regionname,numofuniqueneighbors))
print('nThe neighboring types within region %s are:n%s'%(regionname,'n'.join(map(str,set(neighbors)))))
print('nThe number of unique neighboring distances within region %s is %d'%(regionname,numofuniqueneighborings))
print('nThe neighboring distances within region %s are:n%s'%(regionname,'n'.join(map(lambda x:'%.6f'%x,map(float,set(neighbouringdistances))))))
print('nThe mean neighboring distance within region %s is %.6f'%(regionname,meanneighbouringdistance))
print('nThe standard deviation neighboring distance within region %s is %.6f'%(reigonname,stddevneighbouringdistance))
print('nThe minimum neighbouring distance within region %s is %.6f'%(reigonname,minneighbouringdistance))
print('nThe maximum neighbouring distance within region %s is %.6f'%(reigonname,maxneighbouringdistance))
except ValueError:
pass
numofregions=len(localityinfokeys)
numofregions=len(set(localityinfokeys))
numofregions=len(set(localityinfonames))
numofregions=len(set(localityinforegiontypes))
numofregions=len(set(localityinfonames)&set(localityinfokeys)&set(localityinforegnontypes))
counterrorscounterrorscounterrorscounterrorscounterrorscounterrorscounterrorscounterrorscounterrorsssssssss='''There are some errors related to incorrect input parameters!
You need to specify either:
–locality-region-name OR –locality-region-type OR –all-localities-regions OR –all-localities-regions-and-their-details'''
counterrorsssssssss='''There are some errors related to incorrect input parameters!
You need to specify either:
–locality-region-name OR –locality-region-type OR –all-localities-regions OR –all-localities-regions-and-their-details'''
counterrorsssssss='''There are some errors related to incorrect input parameters!
You need to specify either:
–locality-region-name OR –locality-region-type OR –all-localities-regions OR –all-localities-regions-and-their-details'''
counterrorsss='''There are some errors related to incorrect input parameters!
You need to specify either:
–locality-region-name OR –locality-region-type OR –all-localities-regions OR –all-localities-regions-and-their-details'''
counterror='''There are some errors related to incorrect input parameters!
You need to specify either:
–localit-y-region-name OR –localit-y-region-type OR –all-localit-y-regions OR –all-localit-y-regios-and-their-details'''
errorstring='''There are some errors related to incorrect input parameters!
You need to specify either:
–locally-region-name OR –locally-region-type OR –all-loca-lties-rigons-or-all-loca-lties-rigons-and-their-details'''
raise RuntimeError(errorstring)
if __name__=='__main__':
#include
#include
#include
int main()
{
char str[]={‘A’,’B’,’C’,’D’,’E’,’F’,’G’};
char *ptr=str;
int len=strlen(ptr);
printf(“字符串的长度为:%d”,len);
for(int i=0;i<len;i++)
printf("%c ",ptr[i]);
printf("n");
return 0;
}
SherryLi/C-Language-Study<|file_sep**C语言中的指针:指向数组与指向数组首元素的指针**
在上一篇博客中,我们讲解了C语言中关于指针的基本概念,但是对于数组与指针之间的关系,我们还没有进行详细的讨论。在这一篇博客中,我们将会讨论下面几个问题:
+ 数组名到底是什么?
+ 指向数组首元素的指针与数组名有什么联系?
+ 指向数组首元素的指针能不能改变?
+ 数组名能不能作为左值?
**一、数组名到底是什么?**
在C语言中,函数参数传递都是按值传递(即只传递变量的拷贝),所以对于函数来说,形参就是实参的拷贝。那么对于一个函数来说,它接收到一个形参时,究竟是接收到了实参的拷贝呢?还是直接接收到了实参本身呢?
例如:
void fun(int *ptr)
{
printf("%dn",*ptr);
}
int main()
{
int arr[]={10};
fun(arr);
return 0;
}
如果形参`ptr`只是实参`arr`的拷贝,则执行`printf()`时应该打印出地址而不是值。但事实上它输出了整数10。所以可以得出结论:形参其实就是实参本身。这样就引出了下面两个问题:
+ 实参也就意味着它们有自己独立的内存空间吗?
+ 那么如何理解函数调用时候实际发生了什么呢?
现在回答第一个问题:不管是全局变量还是局部变量,在函数外部和函数内部都有自己独立的内存空间。而且函数内部对于外部变量所做出修改并不影响外部变量。因此可以推导出第二个问题:当调用一个函数时,编译器会为该函数分配独立空间,并将其参数复制到该独立空间中去;当程序执行完该函数后,编译器会将该独立空间释放掉。因此可以认为虽然形参其实就是实参本身,但两者其实分别位于不同内存空间中。
现在回答第一个问题:如果说`arr`也有自己独立内存空间,则它和`ptr`应该位于不同位置;而且根据前面分析可知,在调用fun()时会将arr复制到另外一个单独分配好内存空间里去(这里称为fun_arr)。那么如何理解下面这段代码呢?(假设arr与fun_arr均位于相同地址)
void fun(int *ptr)
{
printf("%dn",*ptr);
}
int main()
{
int arr[]={10};
fun(arr);
return 0;
}
当程序执行到fun(arr);时,arr已经被复制到了另外一块单独分配好内存空间里去(即fun_arr),并且由于它们位于相同地址,则修改其中任意一个都会导致另外一个被修改;那么通过下面这段代码可见,在主调用者(即main)中修改arr也会导致被调用者(即fun)中fun_arr被修改;而在被调用者中修改fun_arr也会导致主调用者中arr被修改。(注意这里只要保证两者位于相同地址则可)
void fun(int *ptr)
{
ptr++;
}
int main()
{
int arr[]={10};
fun(arr);
return 0;
}
通过上述分析可知:当使用数组名作为参数进行传递时,并不需要进行复制操作;因为数组名本身就代表着整个数组(或者说代表着整个独立内存区域)。因此可以认为在使用数组名作为参数进行传递时,并没有进行复制操作。这样就引出了下面几个问题:
+ 如果没有进行复制操作,则形式参数是否也像之前所说那样属于单独分配好内存区域呢?
+ 如果没有进行复制操作,则形式参数是否属于某种特殊情况呢?
+ 如果没有进行复制操作,则如何理解形式参数和真正参数之间关系呢?
从上述三个问题来看,在使用数组名作为参数进行传递时似乎并不存在单独分配好内存区域给形式参数;但如果没有单独分配好内存区域给形式参数则无法解释以下几种情况:
void fun(int *ptr)
{
ptr++;
}
int main()
{
int arr[]={10};
fun(arr);
return 0;
}
从以上代码可以看出,在被调用者中对形式参数做任何修改都不会影响主调用者中真正参数;因此可以推测:尽管没有单独分配好内存区域给形式参数但也不能认为他们共享同一片区域。换句话说:尽管没有单独分配好内存区域给形式参数但他们依旧存在某种特殊关系;具体来说就是他们共享同一片数据段!通过以上三个例子可见,在使用数组名作为参数进行传递时,并不存在单独分配好内存区域给形式参数;而且由于他们共享同一片数据段,则说明他们并非两个完全不同对象!因此可以推测在使用数组名作为参数进行传递时候,“真正”和“虚拟”之间存在某种特殊关系!更进一步地推测,“真正”和“虚拟”可能只相差一个符号!最终通过验证得出结论:“真正”和“虚拟”的确只相差一个符号!具体来说就是“