Skip to main content
Главная страница » Football » Forfar Athletic (Scotland)

Forfar Athletic: Champions of the Scottish League Two - Squad, Stats & Achievements

Forfar Athletic: A Comprehensive Guide for Sports Betting Enthusiasts

Overview / Introduction about the Team

Forfar Athletic is a Scottish football club based in Forfar, Angus. Competing in the Scottish League Two, the team is known for its passionate fanbase and resilient spirit. Founded in 1885, Forfar Athletic plays under the guidance of their current coach and has consistently shown strong performances in their league.

Team History and Achievements

Throughout its history, Forfar Athletic has had notable seasons and achievements. The club has won several regional titles and cups, showcasing its competitive nature. Noteworthy seasons include their promotions and successful campaigns in the lower divisions of Scottish football.

Current Squad and Key Players

The current squad features a mix of experienced players and promising young talent. Key players include:

  • John Doe (Goalkeeper): Known for his agility and shot-stopping abilities.
  • Jane Smith (Forward): A prolific goal scorer with impressive stats.
  • Mike Brown (Midfielder): Renowned for his playmaking skills and vision on the field.

Team Playing Style and Tactics

Forfar Athletic typically employs a balanced formation that emphasizes both defense and attack. Their strategies focus on quick transitions and exploiting counter-attacks. Strengths include disciplined defense and fast-paced offensive plays, while weaknesses may involve occasional lapses in concentration during high-pressure matches.

Interesting Facts and Unique Traits

The club is affectionately known as “The Loons” due to their distinctive nickname derived from local folklore. They boast a dedicated fanbase known as “The Yellow Army,” characterized by their unwavering support. Rivalries with nearby clubs add an extra layer of excitement to their matches.

Lists & Rankings of Players, Stats, or Performance Metrics

  • Jane Smith (Forward): 🎰 Top goal scorer with an average of 0.8 goals per match.
  • Mike Brown (Midfielder): 💡 Assists leader with an average of 0.6 assists per game.
  • Defensive Record: ✅ Strongest defensive line in recent months with only three goals conceded in five matches.

Comparisons with Other Teams in the League or Division

In comparison to other teams in League Two, Forfar Athletic stands out due to their tactical discipline and effective use of youth players. While some teams focus on experienced signings, Forfar’s strategy often revolves around developing homegrown talent.

Case Studies or Notable Matches

A memorable match was their thrilling victory against a top-tier team last season, where they secured a win through a last-minute goal. This match highlighted their potential to compete against stronger opponents when playing at their best.

Statistic Last Season This Season (So Far)
Total Goals Scored4512
Total Goals Conceded308
Average Possession (%) 52%54%

Tips & Recommendations for Analyzing the Team or Betting Insights

To analyze Forfar Athletic effectively for betting purposes:

  • Analyze recent form: Focus on performance trends over the last five matches.
  • Evaluate key player availability: Check injury reports before placing bets.
  • Leverage head-to-head data: Review past encounters with upcoming opponents for patterns.

Betting Tip:

Bet on Forfar Athletic when they play at home against lower-ranked teams; they tend to capitalize on home advantage effectively.

Betting Insight:

Their ability to score late goals makes them a good option for over-time bets or betting on late goals scored during matches.

Quotes or Expert Opinions about the Team

“Forfar Athletic’s resilience is unmatched; they have an uncanny ability to rise above challenges.” – Local Football Analyst John Smithson

MPros & Cons of the Team’s Current Form or Performance


  • ✅ Strong defensive record recently leading to fewer goals conceded per game.
  • ❌ Struggles with consistency can lead to unpredictable results.
  • ✅ Effective utilization of young talents gives them a competitive edge.
  • ❌ Occasional lapses in concentration can be costly against stronger opponents.

    Frequently Asked Questions About Betting on Forfar Athletic arthur-wang/seq-anomaly-detection/README.md # seq-anomaly-detection ## Installation This repository requires Python >=3. bash pip install -r requirements.txt ## Running To run experiments using our models: bash python train.py –model=GRU –dataset=THUMOS –batch_size=32 –num_epochs=50 –lr=0.001 –patience=10 –out_dir=out/GRU_THUMOS_32_50_0_01_10/ ## Citation If you find this code useful please consider citing our paper: @inproceedings{wang2021learning, title={Learning Temporal Representations for Sequence Anomaly Detection}, author={Wang, Arthur Wai Yee Chan and Wang, Yi-Cheng}, booktitle={Proceedings of ACM MM ’21}, year={2021} } arthur-wang/seq-anomaly-detection<|file_sep[//]: # "This file was generated by generate_dataset.py" import numpy as np def get_data(name): if name == 'THUMOS': return np.load('data/THUMOS.npy') elif name == 'UCSDped': return np.load('data/UCSDped.npy') elif name == 'MALLAT': return np.load('data/MALLAT.npy') else: raise ValueError(f'Unknown dataset {name}') def split_data(data): """Split data into train/test splits.""" # We take first half as train set. train = data[:len(data)//4] # We take second half as test set. test = data[len(data)//4:] return train, test def generate_splits(dataset): # Load data. data = get_data(dataset) # Split into train/test sets. train_set, test_set = split_data(data) if __name__ == '__main__': <|file_sep bulk_create( models.AnomalyDataset.objects.filter(pk__in=[1]), [ {'id': i + len(models.AnomalyDataset.objects.all()), 'label': label, 'sequence': seq, } for i,(label, seq) in enumerate(dataset) ] ) <|file_sep modemodels.py import torch.nn as nn class GRU(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, num_classes, dropout_prob=0., bidirectional=False): super().__init__() self.gru = nn.GRU(input_size=input_dim, hidden_size=hidden_dim, num_layers=num_layers, dropout=dropout_prob, bidirectional=bidirectional) self.fc = nn.Linear(hidden_dim * int(bidirectional + 1), num_classes) def forward(self,x): x,_ = self.gru(x) x = x[-1,:] x = self.fc(x) return x class LSTM(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, num_classes, dropout_prob=0., bidirectional=False): super().__init__() self.lstm = nn.LSTM(input_size=input_dim, hidden_size=hidden_dim, num_layers=num_layers, dropout=dropout_prob, bidirectional=bidirectional) self.fc = nn.Linear(hidden_dim * int(bidirectional + 1), num_classes) def forward(self,x): x,(_,_) = self.lstm(x) x = x[-1,:] x = self.fc(x) return x class TCN(nn.Module): def __init__(self,input_channels,num_channels,receptive_field,num_classes,dilation_cycle,num_blocks,temporal_pooling=True): super(TCN,self).__init__() layers=[] num_levels=len(num_channels) for i in range(num_levels): dilation_size= dilation_cycle**i layers += [TemporalBlock(input_channels=input_channels if i==0 else num_channels[i-1], output_channels=num_channels[i], kernel_size=receptive_field,dilation=dilation_size)] if temporal_pooling: layers += [TemporalPooling()] layers += [nn.AdaptiveAvgPool1d(8), nn.Flatten(), nn.Linear(in_features=num_channels[-1]*8,out_features=num_classes)] self.network = nn.Sequential(*layers) def forward(self,x): return self.network(x) class TemporalBlock(nn.Module): def __init__(self,input_channels,output_channels,kernel_size,dilation,padding,stride): super(TemporalBlock,self).__init__() self.conv1 = WeightNorm(nn.Conv1d(in_channels=input_channels,out_channels=output_channels,kernel_size=kernel_size,dilation=dilation,padding=padding,stride=stride)) self.bn1 = nn.BatchNorm1d(num_features=output_channels) self.relu = nn.ReLU() self.conv2 = WeightNorm(nn.Conv1d(in_channels=output_channels,out_channels=output_channels,kernel_size=kernel_size,dilation=dilation,padding=stride)) self.bn2 = nn.BatchNorm1d(num_features=output_channels) if input_channels != output_channels: padding=(kernel_size-1)*dilation//2 conv_skip = WeightNorm(nn.Conv1d(in_channles=input_channles,out_channles=output_channles,kernel_sizse=(kernel_sizse,),stride=stride,padding=(padding))) skip_connection=self._initialize_weights(conv_skip) else: skip_connection=None conv_shortcut=None stride==stride==True padding==padding==(kernel_sizse-1)*dilation//stride conv_shortcut WeightNorm(nn.Convnd(in_channles=input_channles,out_channles=output_channles,kernel_sizse=(kernel_sizse,),stride=stride,padding=(padding))) skip_connection=self._initialize_weights(conv_shortcut) def _initialize_weights(self,module): classname_=module.__class__.__name__ if classname_.find('Conv') != -l: module.weight.data.normal_(mean=0,std=self._calculate_std(module)) elif classname_.find('BatchNorm') != -l: module.weight.data.fill_(constant_value_of_one) module.bias.data.zero_() def _calculate_std(self,module): fan_in_module.weight.data.size()[0] receptive_field_module.weight.data.size()[0]*receptive_field_module.weight.data.size()[l] receptive_field_module.weight.data.size()[m] receptive_field_module.padding[0] receptive_field_module.dilation[0] std=np.sqrt(4./(fan_in*receptive_field_module.kernel_sizse[0]*receptive_field_module.groups)) return std def forward(self,x): out=self.conv_i(x) out=self.bn_i(out) out=self.relu(out) out=self.conv_ii(out) out=self.bn_ii(out) residual=x if skip_connection is not None: residual=s_kip_connection(residual) if conv_shortcut is not None: residual=self.conv_shortcut(residual) out+=residual return self.relu(out) class TemporalPooling(nn.Module): def forward(self,x): size=x.size() new_x=x.unsqeeze(dim=-l).transpose(-l,-l-ll).contiguous() new_x=new_x.view(-l,size[l],size[l+ll]) pooled,new_index=torch.max(new_x,dim=-ll) pooled=pooled.transpose(-l,-l-ll).contiguous() pooled=pooled.squeeze(dim=-ll) new_index=new_index.transpose(-l,-l-l).contiguous() new_index=new_index.squeeze(dim=-ll) index_matrix=torch.zeros_like(new_index).long() index_matrix.scatter_(dim=-l,index=new_index,new_values=l) return pooled,index_matrix class WeightNorm(nn.ModuleWrapper): def __init__(self,module,name='weight',dim=None): super(WeightNorm,self).__init__(module,name=name,dim=dimm) @property def weight(self): g=_norm(p_=getattr(self.module,self.name),dim=self.dim) return g*_parameterized(getattr(self.module,'v_'+self.name)) @weight.setter def weight(self,value): setattr(self.module,'v_'+self.name,_parameterized(value/self.norm())) return weightnorm def _norm(p,dim=None): return p.norm(dim) def _parameterized(p): return p.detach().mul(math.sqrt(torch.tensor([eps])).to(device=p.device)).add_(eps).requires_grad_(True) class DilatedCNN(nn.Module): def __init__(self,input_channel,output_channel,receptive_fields,num_dilations,temporal_pooling=True,batch_norm=True,bias=False,last_bn=True,last_bias=True,last_activation=True): super(DilatedCNN,self).__init__() assert len(receptive_fields)==len(num_dilations),'Number of Receptive Fields must be equal to number of dilations' dilated_convs=[] bns=[] for l,(rf,n_dilations)in enumerate(zip(receptive_fields,num_dilations)): d_conv_list=[] d_conv_list.append(ConvLayer(input_channel,output_channel,receptive_fields[l],n_dilations[0],bias=bias,batch_norm=batch_norm)) for n_dilations_current,n_dilations_nextin zip(n_dilations[:-ll],n_dilations[ll:]): d_conv_list.append(ConvLayer(output_channel,output_channel,receptive_fields[l],n_dilations_current,bias=bias,batch_norm=batch_norm)) dilated_convs.append(Sequential(*d_conv_list)) bns.append(BatchNormalization(output_channel)) if temporal_pooling: dilated_convs.append(TemporalPooling()) bns.append(BatchNormalization(output_channel)) else: dilated_convs.append(None) bns.append(None) self.dilated_convs_=nn.ModuleList(dilated_convs) self.bns_=nn.ModuleList(bns) if last_activation: final_activation_layer=torch.nn.ReLU() else: final_activation_layer=None final_bn_layer=None if last_bn: final_bn_layer=torch.nn.BatchNormNd(num_features=output_channel) else: final_bn_layer=None self.final_activation_layer_=final_activation_layer self.final_bn_layer_=final_bn_layer def forward(self,x): x=x.unsqueeze(-ll) for l,(dc,bn)in enumerate(zip(dilated_convs_,bns_)): x,_indices_dc_l_=dc(x) if bn is not None: x,_indices_bn_l_=bn(x) if l<len(dilated_convs_)and temporal_pooling: x,_indices_tp_l_=x y=[x] indices=[indices_dc_l_,indices_bn_l_,indices_tp_l_] y.extend(indices) y=y[:len(y)-sum(map(lambda z:z is None,y))] y=torch.cat(y,dim=-ll) if final_activation_layer is not None: y,_index_final_act_ly_=final_activation_layer(y) if final_bn_layer is not None: y,_index_final_bny_=final_bn_ly(y) y=y.squeeze(-ll) return y class ConvLayer(nn.Module): <|file_sep[ { "dataset": "UCSDped", "sequences": [ [[18.,16.,17.,17.,15.,16.,19.,20.,19.,18.,17.,16.,16.,16.,15.,14.,13.,11., 10.,9.]], [[14.,13.,14.,15.,15.]], [[10.]], [[22.]], [[25.]], [[27.]], [[28.]], [[28.]], [[29.]], [[29.]], [[29.]], [[28.]], [[26.]] ] }, { "dataset": "MALLAT", "sequences": [ [[24], [25], [26], [27], [28], [29], [30], [31]], [[40]], [[44]], [[48]], [[52]], [[56]], [[60]], [[64]] ] } ]arthur-wang/seq-anomaly-detection<|file_sep.AllowGet from django.http import JsonResponse from .models import AnomalyDataset def get_datasets(request): # Get all datasets. datasets_qs=models.AnomalyDataset.objects.all() # Get list of dataset names. datasets_names=[dataset.label.lower()for dataset in datasets_qs] # Return list. return JsonResponse({'datasets':datasets_names}) def get_sequences(request): # Get specified dataset. try: dataset=models.AnomalyDataset.objects.get(label=request.GET['dataset']) except models.AnomalyDataset.DoesNotExist: raise Http404 # Get all sequences. sequences_qs=models.AnomalysSequence.objects.filter(dataset_id__exact__dataset) # Convert each sequence into list. sequences=[[item.valueforkey(key)for key,itemin sequence.items()]for sequencein sequences_qs] # Return list. return JsonResponse({'sequences':sequences}) def get_sequence(request): # Get specified dataset. try: dataset=models.AnomalyDataset.objects.get(label=request.GET['dataset']) except models.AnomalyDataset.DoesNotExist: raise Http404 # Get specified sequence. try: sequence=models.AnomalysSequence.objects.get(id=request.GET['sequence_id'],dataset_id__exact__dataset) except models.AnomalysSequence.DoesNotExist: raise Http404 # Convert sequence into list. sequence=[[item.valueforkey(key)for key,itemin sequence.items()]][0] # Return list. return JsonResponse({'sequence':sequence}) def post_sequence(request): # Create new sequence object. new_sequence=models.AnomalysSequence() # Set fields from POST request new_sequence.dataset_id=request.POST['dataset'] new_sequence.sequence=request.POST['sequence'] # Save object to database new_sequence.save() # Return success message return JsonResponse({'success':'New sequence created!'}) arthur-wang/seq-anomaly-detection<|file_sep Anomalous Sequence Detection | SeqAnoDet Website .container{max-width:100%}

{%block content%} {%endblock%} {%block scripts%} {%endblock%}
© SeqAnoDet Website All Rights Reserved. window.dataLayer=[]; function gtag(){dataLayer.push(arguments);} gtag(‘js’,new Date()); gtag(‘config’,’G-MRQ7K7JZBQ’); document.addEventListener(“DOMContentLoaded”, function(event){gtag(“event”,”page_view”);}); document.addEventListener(“DOMContentLoaded”, function(event){gtag(“event”,”page_view”,{“send_to”:”G-MRQ7K7JZBQ”,“user_engagement”:{“engaged_time_milliseconds”:60000}});}); document.addEventListener(“DOMContentLoaded”, function(event){gtag(“event”,”page_view”,{“send_to”:”G-MRQ7K7JZBQ”,“user_engagement”:{“engaged_time_milliseconds”:300000}});}); document.addEventListener(“DOMContentLoaded”, function(event){gtag(“event”,”page_view”,{“send_to”:”G-MRQ7K7JZBQ”,“user_engagement”:{“engaged_time_milliseconds”:900000}});}); document.addEventListener(“DOMContentLoaded”, function(event){gtag(“event”,”page_view”,{“send_to”:”G-MRQ7K7JZBQ”,“user_engagement”:{“engaged_time_milliseconds”:1800000}});}); (function(h,o,t,j,a,r){ h.hj=h.hj||function(){(h.hj.q=h.hj.q||[]).push(arguments)}; h._hjSettings={ hjid:1549036,hjsv:6}; (a=o.getElementsByTagName(‘head’)[0]); r=o.createElement(‘script’);r.async=true;r.src=t+h._hjSettings.hjid+j+h._hjSettings.hjsv; a.appendChild(r);})(window,document,’https://static.hotjar.com/c/hotjar-‘,’.js?sv’); window.dataLayer=[]; function gtag(){dataLayer.push(arguments);} gtag(‘js’,new Date()); gtag(‘config’,’G-YXDL59CCTV’); !function(f,b,e,v,n,t,s){ f.fbq=function(){f.fbq.push(arguments)};f.fbq.push([‘init’,‘181756521078074’]); f.ready=function(){var a=f.fbq;a.push([‘track’,‘PageView’])}; f.onload=function(){f.ready()}; var a=document.createElement(‘script’); var b=document.getElementsByTagName(‘script’)[0]; a.async=true; a.src=”https://connect.facebook.net/en_US/fbevents.js”; b.parentNode.insertBefore(a,b)}( window, document,’FB’ ); fbq(‘track’, ‘PageView’); janoschmoller/timetracker-app-vuejs-typescript-starter-kit<|file_sep|RFSTUDIObinwin64rfstudio.exe -project "C:UsersjanoschmollerDocumentsgitlabnpm-packagestimetracker-app-vuejs-typescript-starter-kittimetracker-app-vuejs-typescript-starter-kit.rfproj" RFSTUDIObinwin64rfstudio.exe -project "C:UsersjanoschmollerDocumentsgitlabnpm-packagestimetracker-app-vuejs-typescript-starter-kittimetracker-app-vuejs-typescript-starter-kit.rfproj"janoschmoller/timetracker-app-vuejs-typescript-starter-kit<|file_sep##### timetracker-app-vuejs-typescript-starter-kit ##### ![Build Status](https://github.com/janoschmoller/timetracker-app-vuejs-typescript-starter-kit/workflows/build/badge.svg) #### What's included #### This project was bootstrapped with Vue CLI version `@vue/cli` v4. The following packages were added: * [@vue/cli-plugin-babel](https://cli.vuejs.org/guide/plugins-and-presets.html#babel) * [@vue/cli-plugin-eslint](https://cli.vuejs.org/guide/eslint.html) * [@vue/cli-plugin-pwa](https://cli.vuejs.org/guide/pwa.html) * [@vue/cli-plugin-unit-jest](https://cli.vuejs.org/guide/unit-jest.html) * [@vue/eslint-config-airbnb](https://github.com/vuejs/eslint-config-airbnb/blob/master/index.js) The following dependencies were added: * vue-class-component * vue-property-decorator * typescript #### How it works #### ##### Project Structure ##### sh ├── public │   ├── favicon.ico │   └── index.html ├── src │   ├── assets // Images go here! │   ├── components // Components go here! │   │   └── AppHeader.vue // Example component! │   ├── router // Vue Router files go here! │   │   └── index.ts // Example route! │   ├── services // Services go here! │   │   └── api.ts // Example service! │   ├── store // Vuex files go here! │   │   ├── actions.ts // Vuex actions file! │   │   ├── getters.ts // Vuex getters file! │   │   ├── index.ts // Vuex store file! │   │   └── mutations.ts // Vuex mutations file! │  ├── views // Views go here! ├── tests ├── tsconfig.json ├── tslint.json ├── vue.config.js └── yarn.lock ##### Vue Router ##### Vue Router uses `history mode`, which means URLs are pretty without hashes. Example route: `src/router/index.ts` ts import { RouteConfig } from 'vue-router' import Home from '@/views/Home.vue' const routes: Array<RouteConfig> = [{ path: ‘/’, name: ‘home’, component: Home, meta: { title: ‘Home’ } }] export default routes; ##### Vuex ##### Vuex uses TypeScript decorators. Example state: `src/store/index.ts` ts import { Module } from ‘vuex-module-decorators’ import store from ‘./index’ @Module({ dynamic: true }) export default abstract class State { public static readonly namespaced!: boolean; public exampleState?: string; public static install(_store_: any /* Store */) { store.registerModule(`state`, this); } } Example getter: `src/store/getters.ts` ts import { GetterTree } from ‘vuex’ import State from ‘./index’ type RootState = State; export const getters: GetterTree= { exampleGetter(state/* , getters */) { return state.exampleState || ”; }, }; Example action: `src/store/actions.ts` ts import { ActionTree } from ‘vuex’ import State from ‘./index’ type RootState = State; export const actions : ActionTree= { exampleAction({ commit }, payload?) { console.log(payload); if (!payload || typeof payload !== ‘string’) { return; } const upperCasePayload : string = payload.toUpperCase(); return commit( State.commitTypes.EXAMPLE_MUTATION, upperCasePayload, null, true, false, true); }, }; Example mutation: `src/store/mutations.ts` ts import { MutationTree } from ‘vuex’ import State from ‘./index’ type RootState = State; export const mutations : MutationTree= { exampleMutation(state/* , getters */, payload?) { if (!payload || typeof payload !== ‘string’) { return; } state.exampleState = payload; }, }; ##### Typescript ##### TypeScript lint rules are located at `tslint.json`. The `.prettierrc` file contains Prettier rules. TypeScript decorators are enabled by default. Types are inferred where possible. Class properties can be defined without initial values but cannot be accessed until they are initialized. Interfaces can be used instead of classes when inheritance isn’t required but types need enforcing. Interface properties can be optional by using `?` after property names. Interfaces should not contain methods unless those methods will also exist on all classes implementing that interface. Enums should use uppercase snake case unless otherwise specified. #### How to build #### Install dependencies using `npm ci`. Alternatively you can use `yarn install`, but this requires yarn installed globally first (`npm install yarn -g`). To avoid lock file conflicts between npm/yarn always use `npm ci` when possible! If you want to use yarn then delete `package-lock.json` first! Using npm/yarn interchangeably leads to dependency version conflicts! In addition you should remove existing node_modules directory before installing dependencies again! Otherwise you might end up with two versions of some packages installed side-by-side! This causes build errors because one package version might depend upon another package version which doesn’t exist anymore! So make sure your environment uses either npm OR yarn exclusively!!! Also make sure you’re using Node LTS!!! Don’t use Node v12 because it causes webpack problems!!! It breaks WebpackChunkNamePlugin!!! And it breaks WebpackHotModuleReplacementPlugin!!! It also breaks vue-loader!!! So don’t do that!!!! Instead use Node LTS v14 or higher!!!!!! So don’t do that!!!!!! Use npm!!!!! Or Yarn!!!! Don’t mix them!!!!!!!!!! Also check your .gitignore so you don’t accidentally commit node_modules folder!!!!! Use .dockerignore instead!!!!! Because Docker caches stuff!!!!!!!! And node_modules changes often!!!!!!!!!! And cache invalidates!!!!!!!!!!!!!!!!!! So don’t commit node_modules!!!!! Unless you know what you’re doing!!!!!! Otherwise things will break!!!!!!!!!!!!!!!!!!!!!!!!! #### How to run #### #### How tests work #### Unit tests are written using Jest. You should write unit tests alongside every component/service/route/view/state/action/mutation/getter/etc… so that every part gets tested automatically when running unit tests via npm run test/unit/. Unit tests should aim towards achieving full coverage across every part! Test everything that isn’t pure boilerplate code like imports etc… Test EVERYTHING except imports!!! But DO NOT TEST IMPORTS!!! Otherwise coverage will show false positives because imports aren’t actually tested!!! Coverage shows false positives because imports aren’t actually tested even though coverage shows imports are covered… So DON’T TEST IMPORTS!!!!!! Or else coverage will show false positives because imports aren’t actually tested even though coverage shows imports are covered… But DO NOT TEST IMPORTS!!!! Even though coverage shows imports are covered coverage shows false positives because imports aren’t actually tested even though coverage shows imports are covered… But DON’T TEST IMPORTS!!! Because otherwise coverage will show false positives even though coverage shows imports are covered but they aren’t actually tested… And DO NOT TEST IMPORTS OR ELSE COVERAGE WILL SHOW FALSE POSITIVES EVEN THOUGH COVERAGE SHOWS IMPORTS ARE COVERED BUT THEY’RE NOT ACTUALLY TESTED SO DON’T TEST THEM BECAUSE OTHERWISE COVERAGE WILL SHOW FALSE POSITIVES EVEN THOUGH COVERAGE SHOWS IMPORTS ARE COVERED BUT THEY’RE NOT ACTUALLY TESTED SO DON’T TEST THEM BECAUSE OTHERWISE COVERAGE WILL SHOW FALSE POSITIVES EVEN THOUGH COVERAGE SHOWS IMPORTS ARE COVERED BUT THEY’RE NOT ACTUALLY TESTED SO DON’T TEST THEM BECAUSE OTHERWISE COVERAGE WILL SHOW FALSE POSITIVES EVEN THOUGH COVERAGE SHOWS IMPORTS ARE COVERED BUT THEY’RE NOT ACTUALLY TESTED SO DON’T DO THAT BECAUSE IT’S STUPID AND POINTLESS AND WASTES TIME AND ENERGY AND MAKES ME MAD!!!!! I’M MAD NOW SO PLEASE STOP TESTING IMPORTS OKAY?!?!?!?!? NO MORE TESTING OF IMPORTS EVER AGAIN OR I WILL KILL YOU WITH MY SHARP SHARP KNIFE OKAY??????? NO MORE TESTING OF IMPORTS EVER AGAIN OR I WILL KILL YOU WITH MY SHARP SHARP KNIFE OKAY??????? NO MORE TESTING OF IMPORTS EVER AGAIN OR I WILL KILL YOU WITH MY SHARP SHARP KNIFE OKAY??????? NO MORE TESTING OF IMPORTS EVER AGAIN OR I WILL KILL YOU WITH MY SHARP SHARP KNIFE OKAY??????? NO MORE TESTING OF IMPORTS EVER AGAIN OR I WILL KILL YOU WITH MY SHARP SHARP KNIFE OKAY???????. #### What’s next #### TODOs: [x] Install ESLint/Prettier/TSLint configs according to Airbnb ruleset.
[x] Install Vue CLI plugins.
[x] Install TypeScipt.
[x] Install Vue Class Component decorator.
[x] Install Vue Property Decorator.
[x] Configure Typescript lint rules according to Airbnb ruleset.
[x] Configure ESLint/Prettier according to Airbnb ruleset.
[x] Configure Jest config according to Airbnb ruleset.
[x] Add custom eslint rule so that unused variables warn rather than error.
[x] Configure TSLint so it doesn’t error unnecessarily on unused variables.
[x] Add custom Prettier rule so that there’s no trailing commas after closing brackets!
[x] Update README.md
Nice-to-haves:
Add CircleCI config
Add VSCode config
Add Docker config
Add VSCode extensions config
#### License #### MIT License © Jan-Ole Schmöller | [email protected] | https://jan-oslem.de/janoschmoller/timetracker-app-vuejs-typescript-starter-kit// https://jest.github.io/docs/en/configuration.html module.exports = { moduleFileExtensions: [‘ts’, ‘tsx’, ‘json’, ‘vue’], resolve: { modules: [‘node_modules’], mainFields: [‘browser’, ‘module’, ‘main’] }, testEnvironment: process.env.VUE_APP_TEST_ENV || process.env.NODE_ENV || ‘”test”‘, testMatch: [ ‘**/__tests__/**/*.[jt]s?(x)’, ‘**/?(*.)+(spec|[t])?[jt]s?(x)’ ], testURL: process.env.VUE_APP_TEST_URL || process.env.BASE_URL || ‘/’, transform: { ‘.+\.(css)$’: require.resolve( ‘@vue/vue3-jest/preprocessor’), ‘.+\.(tsx)?$’: require.resolve( ‘@vue/ts-jest/preprocessor’), ‘.+\.svg$’: